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Chapter 1

Introduction

On February 11th, 2001, both the international publicly funded Human Genome Project and a

private corporation (Celera Genomics) published the completed sequence of the human genome,

the hereditary information in the form of DNA that is stored in every single cell (The Genome

International Sequencing Consortium, 2001; Venter et al., 2001). This event marked the pre-

liminary end of one of the most ambitious scientific projects that had ever been undertaken —

deciphering the molecular plan of human life.

DNA sequencing is the process of determining the string of basic molecules that make up

the desoxyribonucleic acid, the main carrier of hereditary information. It has become a factory

process, and the speed and capacity of the sequencing machines has been immensely increased

during the last 10 years. The sequencing of the human genome was thus finished five years earlier

than scheduled in the original project outline, and it is not the only organism whose sequencing

has been finished well ahead of time. Among the organisms whose complete DNA sequence was

deposited in the public data bases in the year 2000 were important model organisms such as

the fruit fly Drosophila melanogaster (Adams et al., 2000) and the first plant with a completely

sequenced genome, Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000).

The arrival of these enormous amounts of data — the human genome, for example, consists

of three billion basic units — has turned molecular biology into a computationally intensive

discipline. This starts with the task of storing large amounts of data in different places, cross-

linking them in an intelligent fashion and enabling access to it. But the application of comput-

ers goes far beyond that: Computers are essential to make sense of these data. The amount of

information makes it often impossible to continue with biological research in the same labour-

intensive way as it had been done before, at least not on the scale brought about by large-scale

sequencing projects. A whole new field, bioinformatics, has therefore become an integral part of

molecular biology research on a genome-wide level. It enables researchers to group the various

1
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types of data, filter them for interesting phenomena, learn about the functional background, and

helps them to understand biological processes. Bioinformatics is a truly interdisciplinary field:

an intersection of molecular biology and biochemistry, mathematics and computer science, and

more. Typical topics of this discipline are sequence comparison and database searches for simi-

lar sequences; sequence analysis such as gene finding; phylogenetic analysis that deals with the

evolutionary relations among organisms; 2-d and 3-d structure predictions of biological macro-

molecules; and simulation of regulatory or metabolic pathways. Excellent textbooks have been

published throughout the last years; the ones that mainly deal with machine learning approaches

to bioinformatics and are thus most relevant to this thesis were written by Durbin et al. (1998);

Baldi and Brunak (1998); Salzberg et al. (1998b); Clote and Backofen (2000).

One example of the importance of bioinformatics concerns the interpretation of the complete

DNA sequence of many organisms that the genome projects brought us. Without knowing about

the important information such as the location of the genes, the direct impact of a completed

genome would be limited to providing the sequence information for a few mapped genes —

genes of which one already knew a rough location. Thus, an important scientific achievement that

has accompanied the completed sequences is the automated computer-assisted annotation and

analysis of the genomes: predicting where all the genes are and how they are regulated, finding

genes similar to well-characterized ones from other species, and so forth. The publications on

the human genome, for example, contained annotations of more than 20,000 of the estimated

total number of 30,000–40,000 genes (The Genome International Sequencing Consortium, 2001;

Venter et al., 2001). This is a necessary first step to a subsequent, more detailed analysis of

genes and gene products that one is particularly interested in. Furthermore, it delivers preliminary

results concerning the function of the gene products, based on similarity to already well-studied

products from the same or a related organism. In the case of Drosophila, a more or less detailed

function could be assigned to more than 50 % of the annotated genes (Adams et al., 2000),

ranging from highly specific (“a DNA repair protein”) to rather general (“part of the cellular

membrane”) statements.

An important part of computer-based annotation and analysis concerns regulatory DNA re-

gions — parts of the sequence that have influence on how and when a gene is activated or ex-

pressed. Even though every single cell of a multicellular organism contains all genetic informa-

tion at all times, only a fraction of it is active in a given tissue at any one time. The concerted

and differentiated expression of genes is necessary for the existence of complex living beings

with an intricate development that requires precise control on the expression of information. A

beautiful example of this is an animal like the butterfly where the adult animal has an appear-

ance completely different from its larval form, the caterpillar. Understanding the regulation of

gene expression is therefore undoubtedly one of the most interesting challenges in molecular
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biology today. About 5–10 % of human and Drosophila genes are estimated to be used only to

control the expression of other genes (Adams et al., 2000; Tupler et al., 2001). It is intuitively

clear that errors occurring in this machinery, leading to mis-expression of genes, are a major

cause of genetically based diseases. A current focus of research in bioinformatics is therefore the

identification of regulatory regions and of the patterns in them that are responsible for specific

regulation.

To enable subtle patterns of gene expression, control mechanisms appear at many different

levels. One of the most important control levels is the first step of gene expression, the transcrip-

tion of a gene. Here, the transcriptional machinery of the cell binds to a promoter, a DNA region

that signals the start of a gene, and proceeds with the synthesis of a working copy of the gene.

This thesis deals with the computer-based identification of promoters, and focuses on eukaryotic

promoters of protein-encoding genes. Eukaryotes have compartmented cells with a nucleus that

contains the DNA which is organized in a number of chromosomes. This distinguishes them

from prokaryotes, mostly bacteria, which do not have a nucleus and whose genome mostly con-

sists of a single coiled DNA loop. Protein-encoding genes are the largest group of genes, those

whose transcription product is translated into a protein. The promoters of other gene groups that

do not encode proteins, as well as the promoters of prokaryotic organisms, have a very different

organization from those of protein-encoding genes, and are therefore not regarded in this thesis.

From a simplified computational point of view, the problem of annotation can be seen in

the following abstract way: A channel transmitting large amounts of data in the form of symbol

strings (DNA sequences) is continuously scanned, and each symbol is to be assigned to different

classes: It can, for example, carry information (the genes), be junk (regions between genes that

have no known function), or be a warning sign that information soon follows (the promoters).

1.1 Contributions and goals of this thesis

The main goal of this work is the development of the MCPROMOTER system that can compu-

tationally recognize promoters in long, contiguous eukaryotic DNA sequences such as whole

chromosomes. This is certainly important for DNA sequence annotation which should discover

as much information as possible. But computational models can also help us to find out which in-

formation in a sequence is vital for a reliable recognition, and to increase our incomplete knowl-

edge about the biology of gene expression.

I aim at a tool for general (as opposed to specific) promoter recognition: The model reflects

the overall structure of promoter regions but does not deal with patterns that are specific for

certain promoter subgroups. Also, the model is built to predict promoters ab initio, i. e. using the
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DNA sequence of the organism of interest as only information.

A number of approaches dealing with eukaryotic promoter recognition have been published

over the last ten years, but many of them have been largely heuristic, or have simplified some

well-known facts about promoters. In contrast, my goal is to come up with a largely probabilistic

model that reflects the underlying biology and is able to cope with the inherent variations of the

data; every single promoter is different, which guarantees the specific expression of the gene

under its control.

In particular, I take the following considerations into account:

• A framework is established where a promoter is subdivided in several parts, each of which

is represented by a flexible sub-model.

• The potentially non-linear dependencies among the promoter parts are taken into account.

• To my best knowledge, this thesis describes for the first time how to use structural fea-

tures of eukaryotic DNA to classify promoter sequences, and how to integrate them into a

promoter prediction system.

• The model can be automatically trained for different organisms and is fast enough to be

applicable on whole genomes.

From a computational point of view, the main features of the system are as follows:

• Stochastic segment models are used as model for a promoter sequence, where the states

represent individual parts of a promoter. Evaluation and training algorithms are adapted

from previously described generalizations of the well-known hidden Markov models.

• Interpolated and variable length Markov chains are used as efficient sub-models and trained

with different objective functions. Because we use position-independent stationary chains,

the model tolerates errors in the sequence.

• Non-linear dependencies among promoter parts are captured by a neural network that takes

the likelihoods of the segment model as input.

• Structural, continuously valued DNA features are modeled with Gaussian densities and

therefore easily integrated into the system.

1.2 Outline of this work

This work is structured as follows:
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Chapter 2 provides a concise introduction to the underlying concepts of biology and bioinfor-

matics. After describing the flow of information in the cell, I provide an overview of the

computational annotation of genomes.

Chapter 3 describes gene regulation mechanisms, mainly transcriptional regulation of protein-

encoding genes, and the state of the art in computational promoter finding. I discuss the

basic approaches and some selected examples in more detail.

Chapter 4 gives an overview of the data sets that were used to train and evaluate the models

developed throughout this thesis.

Chapter 5 is devoted to the discrete densities used to model eukaryotic promoter and back-

ground sequences. Particularly, I describe different variants of Markov chain models as well

as stochastic segment models, a generalization of the well-known hidden Markov models.

Chapter 6 addresses the approach to model physico-chemical properties of the DNA in pro-

moter regions with continuous probability densities.

Chapter 7 briefly describes the classification methods of the MCPROMOTER system and dis-

cusses evaluation criteria to measure the success of classification.

Chapter 8 turns to the description and evaluation of the MCPROMOTER system. Using the con-

cepts introduced in previous chapters, I examine how an increasingly complex model im-

proves on the problem of eukaryotic promoter recognition.

Chapter 9 discusses the major outcomes of this work and certain aspects of possible future

work. I also comment briefly on computational methods to analyze promoters to reveal

common regulatory sequence patterns.

Chapter 10 provides a summary of this work.
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Chapter 2

Background in Molecular Biology and

Bioinformatics

At the beginning of this work, I provide some of the necessary background in genetics and

bioinformatics that will enable the reader to understand the context in which this work was

carried out. I will explain the molecular structure and flow of information in the cell, and describe

the computational pipeline used to annotate genes and their functions. In such a limited space,

I cannot hope to provide all of the information on molecular biology that would constitute a

thorough introduction; instead, the reader is referred to standard introductory works such as

Knippers (1997); Alberts et al. (1994); Lewin (1999).

2.1 From DNA to proteins

Many tasks in bioinformatics deal with the analysis of sequences because the large macro-

molecules that play an important role in the cell are polymers: sequences of linearly concatenated

basic units. The most important biopolymers are nucleic acids and proteins, and the following

sections describe how they are assembled, and how they relate to each other. I focus on mecha-

nisms in eukaryotic cells and on the concepts that will be used in later chapters.

2.1.1 Structure of DNA and chromosomes

Hereditary information in the cell is stored in the form of DNA, deoxyribonucleic acid. DNA is

usually present as a double-stranded molecule wherein the individual strands are wound around

each other, forming a helix. The basic units of DNA are the nucleotides which consist of a sugar-

phosphate backbone and one of the four bases adenine, cytosine, guanine and thymine. They are

7
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denoted by the letters A, C, G, and T; sometimes different letters are used to denote possible

subsets from the set of all four, such as an N for “any nucleotide” (see appendix A). Adenine and

guanine are purines; cytosine and thymine belong to the group of pyrimidine bases. Every turn of

the double helix gives room for ten nucleotides. The bases are situated in the middle of the helix

and form hydrogen bonds with the bases from the other strand, with the rule that only A and T

as well as C and G can complement each other (see figure 2.1). That means that all necessary

information is stored in the bases on one strand of the helix. This enables an easy mechanism to

pass on hereditary information: in cell division, the DNA double helix separates, and afterwards

each of the two daughter cells contains one strand of the original cell and one newly synthesized

strand. Double-stranded molecules also have the advantage of increased stability.

DNA molecules are synthesized and read in a particular direction, from the 5’ to the 3’ end1.

When a DNA sequence is written down, the strand which is read from left to right is called the

sense strand whereas its counterpart in the double helix is the anti-sense strand because it is read

in the opposite direction. A point located on the 5’ side of a reference point is said to be upstream,

a location on the 3’ side downstream, and distances are denoted in bases or base pairs (bp).

DNA contains information on a multitude of levels. Already the simple relative frequency

of A–T and G–C nucleotides plays an important role: A–T pairs have a weaker hydrogen bond

than G–C pairs, and a separation of the double helix into single strands therefore requires less

energy in AT-rich regions. Besides, the molecule does not only serve as a carrier of information

but also contains sequences with no other function apart from the regulation of the expression of

information contained in other parts.

Another variant of nucleic acids that can be found in cells is RNA, ribonucleic acid; this

usually single-stranded molecule is very similar to DNA, the differences being a slightly modified

sugar in the backbone and the base uracil (U) in place of thymine. Among other purposes, RNA

can serve as a temporary transmitter of information or as a structural component of cell particles.

In prokaryotic organisms that do not have a nucleus, the DNA is present as a naked double

stranded helix. In eukaryotes, the DNA is divided into several molecules, the chromosomes, and

wrapped up in chromatin. One reason for this is the limited space in the cell: A linear double

helix of DNA of the entire chromosome set of a human cell, for example, would be two meters

in length. Chromatin consists of the DNA itself and protein complexes, mainly histones, around

which the DNA is coiled up forming nucleosomes. This structure is subsequently folded into

a more compact solenoid, where specific histones seal the DNA around one nucleosome and

associate with each other (see figure 2.2). This tight packing is able to regulate the accessibility
1The numbers 5 and 3 denote the locations on a nucleotide molecule where the previous and next one in a chain

are attached.
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Figure 2.1: Structure of DNA. The left side shows the double stranded composition, the right

side the famous double helix of the molecule (from The National Human Genome Research

Institute (2002)).

of regions in the genome on a high level and is therefore important for gene regulation (see

section 3.2.2).

During cell division, the solenoids are further compacted by extensive looping, thus forming

the well-known structure of the chromosomes (figure 2.2). As opposed to prokaryotes which

are haploid, i. e. they own only one copy of their genes, eukaryotes are usually polyploid and

own multiple copies of their chromosomes. Vertebrates and Drosophila are both diploid; one set

of chromosomes is inherited from the male and one from the female ancestor. The ensemble of

molecules bearing hereditary information is called the genome. Table 2.1 shows the genome sizes
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Figure 2.2: Structure of solenoids and chromosomes. (Left) Schematic solenoid structure, from

Latchman (1998). For clarity, histones are not depicted, but one can see how the DNA loops

around them (each “row” contains three nucleosomes). The dotted line denotes the higher order

wrapping into solenoids. (Right) Wrapping of solenoids during cell division results in the well-

known chromosomal structure of DNA (from The National Human Genome Research Institute

(2002)).

of some organisms whose DNA has already been sequenced.

2.1.2 Proteins, transcription and translation

Another important class of biopolymers, proteins, are macromolecules made up by polymeriza-

tion of basic units, the amino acids. In general and throughout all species, a cell uses 20 different

amino acids, although there are additional rare ones. The relationship between DNA and proteins

is as follows: A gene denotes a discrete segment of DNA which encodes the sequence of one (or

possibly more than one) protein. Three nucleotides within the coding part of a gene, a codon or

triplet, encode one particular amino acid. As there are 64 different triplets and only 20 different

amino acids, this is a many-to-one relationship: the genetic code is degenerate. Three codons

(UAG, UAA, UGA) serve as a stop signal without an amino acid counterpart, and the codon

AUG encoding methionine always starts a protein.

Proteins are active components of a cell and serve different purposes: For example, they

can form part of the cell membrane, serve as catalytic compounds (enzymes), or influence the

expression of genes. The function of a protein is determined by its three-dimensional structure
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Organism No. chromos. Total size (bp) No. chromos. sets Est. no. genes

Simian Virus 40 1 5, 243 1 6

E. coli 1 4.6 · 106 1 4,400

S. cerevisiae 16 12 · 106 1 or 2 6,000

D. melanogaster 4 140 · 106 2 13,000

A. thaliana 5 120 · 106 2 25,000

H. sapiens 23 3 · 109 2 35,000

Table 2.1: Genome sizes of selected organisms. The genomes of the simian virus 40 and the

prokaryote E. coli contain one double-stranded DNA molecule; the eukaryote genomes are or-

ganized into a number of chromosomes. The yeast S. cerevisiae has a different number of chro-

mosome sets depending on the state of proliferation. In contrast to the model plant organism A.

thaliana, many other plants are polyploid, i. e. they contain more than two chromosome copies.

Note the decreasing gene density in higher eukaryotes.

which occurs when the linear sequence is folded into its most energetically favorable state. The

secondary structure of a protein describes the arrangement of some of its amino acids into basic

three-dimensional units such as α-helices or β-sheets. The tertiary structure then refers to the

three-dimensional conformation of the whole protein.

Proteins which are derived from one common ancestor and thus serve the same purpose

are called homologous. As the sequence determines the structure, and similar structure implies

similar function, homologous proteins show considerable sequence conservation, i. e. a large

number of residues2 have the same or chemically related amino acids. A set of proteins that serve

the same purpose is called a protein family. Homology is also observed on the level of protein

domains — protein parts which carry out the same function, for example, interaction with DNA

or integration into a membrane. A recurrent sequence pattern such as a domain is called a motif

and often described by means of a consensus sequence which shows the most frequent residue(s)

at every position.

The information within a gene is used to synthesize a protein in the following way:

1. During transcription, the so-called messenger RNA is generated — an RNA copy of the

gene sequence. The enzyme which generates the copy of protein encoding genes is called

RNA polymerase II; polymerase I and III transcribe RNA genes that do not encode proteins.

The polymerase recognizes the start of the gene by means of a specific promoter sequence,

starts its work at the transcription start site, and stops it at terminator sites about which
2The term residue denotes a basic unit in a biopolymer.
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Figure 2.3: A multi-exon gene structure. In this artificial example, the start codon is contained

in the second exon, so the 5’ untranslated region (UTR) spans the complete first (non-coding)

exon, the first intron, and a part of the second exon. The location of the start and stop codon, the

promoter region and the transcription start site (TSS) is depicted.

hardly anything is known so far.

2. Eukaryotic translation takes place in the cytoplasm outside of the nucleus and synthesizes

a sequence of amino acids using the sequence of nucleotides in an mRNA molecule as a

template. This process takes place at active cell components called ribosomes. In this pro-

cess, the non-translated RNA gene products play essential roles: ribosomal RNA sequences

are structural components of the ribosomes, and transfer RNAs serve to guide the amino

acids to the ribosomes and the right nucleotide triplet.

The first AUG in an mRNA does not necessarily serve as a start codon, and only the mRNA

part between start and stop codon encodes a protein sequence; thus, the mRNA contains untrans-

lated regions (UTRs) on both ends. In eukaryotes, the story is even more complicated: Stretches

of coding nucleotides (the exons) are interrupted by stretches of non-coding nucleotides (the

introns). At the beginning and end of intron sequences, so-called splice sites are found, charac-

teristic sequence patterns of about 15 base pairs. Figure 2.3 shows an example gene containing

two introns.

After transcription, the introns are spliced out of the pre-mRNA, and the ribosome only sees

an mRNA made up from exon sequences. There is not always a unique way to splice a gene, and

therefore one gene is able to encode more than one protein. Alternative splicing becomes more

the rule than the exception when we look at a highly complex organism (see the recent review by

Graveley (2001)). In humans, at least one third of the genes are alternatively spliced, and at the

moment this is believed to be the main reason why the number of genes does not grow linearly

with the complexity of an organism. On the contrary, the relatively complicated organism of the

fruit fly contains considerably fewer genes than the simple worm C. elegans.



2.2. Computer-based annotation of genomes 13

2.2 Computer-based annotation of genomes

As mentioned above, the raw DNA sequence data that are determined in the course of a se-

quencing project offer few new insights. During the process of annotation, these raw data are

interpreted into useful biological information (see the reviews by Rouzé et al. (1999) for plant

genomes and Lewis et al. (2000) for a more general introduction). In a large-scale sequencing

project for a model organism such as Drosophila, annotation integrates computational analyses

with a lot of biological knowledge about specific genes. It therefore is a semi-automated pro-

cess in which the results of many algorithms are integrated and presented to a human curator,

who then decides on the final annotation. Currently, one can identify two steps in the annotation

task: Structural annotation, which deals with the identification of biologically relevant sites in

the sequence, and functional annotation, which attributes specific biological information to the

genome as a whole and to the sites found in the first step. Annotation provides a broad overview

and description of the features contained in a genome. A deep analysis is still left to the biologist

working in the lab.

Annotation has become a daunting task for large genomes because it is begun while the

sequencing process is far from being finished. It must deal with a constantly changing target,

update and re-annotate new or changed sequences, and track the changes over time. An example

for such a project is the ensEMBL pipeline to annotate the public version of the human genome

(Birney et al., 2001).

2.2.1 Structural annotation

Structural annotation usually comprises locating protein and RNA-encoding genes along with

their control elements, translating the putative genes into proteins, and identifying global ge-

nomic features important for chromosome organization such as matrix attachment regions (Singh

et al., 1997) or CpG islands (see section 3.2.3).

The most crucial step in structural annotation is gene finding. This is a complex task and

involves the identification of patterns in the sequence as well as grouping these putative patterns

to meaningful interpretations. The most recent reviews were written by Stormo (2000b); Haussler

(1998); Burge and Karlin (1998), but they focus on the first of the following three different

approaches to gene finding: ab initio, alignment, and homology based methods.

Ab initio gene finding. This group of gene finders uses no information but the genomic se-

quence itself to find a gene. According to Burge (1997), there are four generations of ab initio

gene finders. The first generation used statistics on coding and non-coding regions to approx-
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Figure 2.4: A probabilistic ab initio gene finder. The picture shows the model structure for the

forward strand that is used in the GenScan system by Burge and Karlin (1997). A comparison

with figure 2.3 reveals that each state represents a particular pattern or region of a gene. GenScan

contains a specific state for single-exon genes and for initial and terminal exons, as their length

distributions differ considerably from internal exons. The three states each for internal exons and

introns are necessary to ensure that the total length of the coding sequence is a multitude of three.

imately locate exons; the second generation combined these statistics with models for splice

sites to exactly locate exons; the third generation combined multiple exons in a model for a sin-

gle gene; and the fourth generation was finally able to predict multiple and partial genes on both

sides of a long genomic sequence. Recent gene finders thus consist of signal sensors that identify

patterns with positionally conserved nucleotides such as the splice sites found at the intron/exon

boundaries, and of content sensors that identify regions with a statistically significant composi-

tion such as coding exons. Exon sequences have distinct oligonucleotide statistics because of the
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three-periodicity caused by the triplets, and also because of a bias in codon usage: not all codons

are used equally frequent. A model then describes admissible combinations of these patterns and

serves to calculate an optimal parse of a DNA sequence. As such, almost all current gene finders

use a framework of hidden Markov models (HMMs) or generalized HMMs (see section 5.3.1).

The first simple HMM based gene finder was developed by Krogh et al. (1994b) to analyze the

bacterial genome of E. coli; later, Kulp et al. (1996) and Burge and Karlin (1997) pioneered

the application of so-called generalized HMMs for eukaryotic genomes. In contrast to simple

HMMs, where a state emits a single symbol each time it is visited, a state in a generalized HMM

models a sequence of symbols. This formalism is perfectly suited for gene structures, as it allows

arbitrary sub-models in the states and therefore integrates both content and signal sensors within

a probabilistic model (see figure 2.4).

Alignment gene finding. An alignment generally refers to the local or global matching of two

biopolymer sequences. Usually, the residues are superimposed in such a way as to minimize

the distance between the two sequences, measured by (possibly negative) scores for matches,

mismatches, and insertions/deletions. Alignments can be efficiently computed by dynamic pro-

gramming algorithms; Durbin et al. (1998) provide an excellent introduction (cf. also section

5.3.2). It is possible to find genes and their structure by means of an alignment of complemen-

tary DNAs (cDNAs) with a genomic sequence. A cDNA is obtained by reversely transcribing an

mRNA found in the cytoplasm, and its complete sequence is assembled from short, sequenced

segments called expressed sequence tags (ESTs). The set of all cDNAs from a certain tissue is

called a library. Because of the low quality of cDNA sequences, wrong nucleotides as well as

insertions and deletions are likely to occur. Therefore, gene finding based on cDNAs employs

dynamic programming for the alignment to the genomic sequence, along with suitable gap costs

for the intronic sequences that are not present in the cDNA, and a model for splice sites (see the

sim4 program by Florea et al. (1998) as a widely used example). Theoretically, cDNA alignments

provide the best way to find genes — ab initio gene finders are only able to find the coding part of

genes along with the intervening introns, and usually miss the pattern-less non-coding exons and

UTRs. Nevertheless, there are a number of pitfalls: Apart from contamination, a cDNA library

contains only sequences of genes that were actively transcribed under certain conditions; other-

wise, no mRNA would be found. Besides, cDNA sequencing does hardly ever span the complete

mRNA; the single-stranded RNA is easily disrupted or digested before the reverse transcription

has reached the opposite end. So-called full-length cDNAs try to circumvent this problem by

selecting the longest cDNA of a whole set that all refer to the same gene, or by selecting cDNAs

that contain the cap structure (section 3.1).
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Homology gene finding. Two variants of homology based gene prediction exist. The first one

attempts to identify a gene in a DNA sequence based on known proteins. This can be done by

a modified dynamic programming approach which takes the one-to-many relationship between

a protein sequence and all DNA sequences that can be translated into that particular protein

into account. Different algorithms use either data bases of known proteins (TBLASTX, a variant

of the popular BLAST alignment algorithm by Gish and States (1993)), or a library of protein

family HMMs (the GeneWise approach by Birney and Durbin (2000)).

The second approach to homology based gene prediction makes use of genomic sequences

of two species, known to contain homologous genes, and aligns them taking possibly different

splicing into account (Bafna and Huson, 2000; Batzoglou et al., 2000). This follows the observa-

tion that coding sequences are usually conserved across species because they are translated into

a protein with similar function, whereas the intervening non-coding sequences may accumulate

mutations without affecting the product.

Homology based gene finding has the disadvantage that the homology might not span the

complete gene but could be limited to a part of the protein. A similar observation is true for partial

cDNAs, too. On the other hand, false positives are hardly ever made with these approaches, and

if something about the function of one gene product is already known, the other one can be

assumed to serve the same purpose. Therefore, recent gene finders usually integrate ab initio with

alignment and/or homology approaches (Reese et al., 2000b; Krogh, 2000; Yeh et al., 2001).

Promoter recognition. The recognition of regulatory regions, namely of promoters, also be-

longs to the first step of annotation. Similar to the different approaches for gene finding, we can

also distinguish between ab initio and homology based methods. Because eukaryotic mRNAs

usually contain only one transcribed gene at once, it is tempting to use a suitable promoter model

as one state of a probabilistic model for ab initio gene finding, as in figure 2.4. In this way, the

admissible search region is restricted to upstream regions of detected genes, and on the other

hand, a reliable promoter recognition could help to recognize the border between two neighbor-

ing genes.

In practice, this idea is hampered because of the lacking ability of gene finders to predict the

non-coding exons at the 5’ and the 3’ end of a gene which do not contain specific patterns. It has

also turned out that promoter recognition is a problem that equals if not exceeds the complexity

of gene recognition. This does not come as a real surprise if one considers that promoters are

located within double stranded DNA in chromatin, whereas the patterns used in gene finding are

still present in linear single stranded mRNAs. Therefore, a simple promoter recognition module

as it is used in the GenScan system in figure 2.4 (see section 3.3 for details) is much less reliable

than the other modules. Gene finders with integrated cDNA alignment are able to considerably
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restrict the admissible region of promoter predictions and are therefore more successful (Reese

et al., 2000b).

A complex system for promoter recognition such as the one introduced in this thesis does

not rely exclusively on linear sequence dependencies but also takes non-linear dependencies

as well as other sources of information into account. Adding such a model to a generalized

HMM and still obeying the underlying theory is not straightforward and poses a challenging

conceptual problem that has not yet been dealt with. In big annotation projects, the algorithms

are thus applied independently of each other, and a human curator deals with the combination

of the results. A comprehensive literature survey on promoter recognition algorithms is given in

section 3.3.

Why promoter recognition is important. From the above discussion, several reasons emerge

why a reliable stand-alone promoter recognition system is useful. Gene regulation is one of

the most important research topics in molecular biology, but one in which many things are still

unclear. It is therefore important to exactly find the regulatory regions to be able to examine them

in detail, either computationally or by experiments, and learn the mechanisms that control the

expression of genes. An evaluation which features improve the quality of promoter predictions

can also help to understand the mechanisms how promoters are actually recognized in the cell.

From the annotation point of view, promoter identification can help gene finding algorithms

to identify the 5’ UTRs that can span up to tens of thousands of kilobases. In the genomic test

set that is used to evaluate the performance of the Drosophila promoter predictor, the average

UTR length is about 2,000 base pairs, and some examples have UTRs that extend over more

than 30,000 bp. It can also help to detect genes in the first place, namely those which are rarely

expressed and thus not part of a cDNA library, short genes which are easily missed altogether,

and non-coding RNA genes which do not show codon statistics at all.

2.2.2 Functional annotation

Once the genes and other functional parts of the DNA sequence have been identified, the next

step consists of the functional annotation of those features. Teichmann et al. (1999) provide a

recent overview of this field.

The first step is the assignment of an isolated function to each individual gene, either by pair-

wise sequence similarity or similarity to a model of a protein family — this is implicitly carried

out in gene finding by homology. The currently best way to do this appears to be a bootstrap ap-

proach: using an up-to-date protein database, similar sequences to the query sequence are pulled

out, and a model is constructed from this new set. This step can be iterated and will thus find
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more and more distant homologues (Park et al., 1998).

If no homologue to a protein arising from a complete gene structure can be found, it may still

be possible to provide some information on the domain level. For this task, large databases of

domain models have been collected (e. g. InterPro (Fleischmann et al., 1999)) that integrate dif-

ferent resources. Also, some properties of a protein, such as its integration into a membrane, can

be predicted reliably (Krogh et al., 2001), and secondary structures such as helices and sheets can

be assigned to some protein regions. This annotation then enables us to look at cross-species con-

servation on a genome-wide level: how many protein families and which of the protein domains

are present in all species, how many of the proteins contain transmembrane components, and so

forth. The Gene Ontology Consortium (2000), among others, aims to provide a controlled vo-

cabulary for such large-scale annotations to ease comparisons of annotation results for different

species.

DNA and protein microarrays provide a completely different view of the genome (DeRisi

et al., 1997; Haab et al., 2001). This technology monitors the activity of many, up to all known,

genes of an organism under certain experimental conditions, either on the mRNA or protein level.

Analyses such as the activity of genes related to the cell cycle (Spellman et al., 1998) provide

a wealth of information. Recently, Shoemaker et al. (2001) have even released an annotation

of the draft human genome based on microarray data. From a number of different experiments,

correlations between the expression of several genes may become visible, and may thus serve to

reconstruct genetic networks depicting the flow of information in different metabolic or regula-

tory pathways of the cell (Bower and Bolouri, 2001; Friedman et al., 2000).

The outcome of microarray analysis also enables further functional annotation. The promoter

regions of co-regulated genes can be analyzed for common patterns (see chapter 9); on the other

hand, such common patterns may also serve to provide functional annotation based on the pro-

moter regions of genes, especially for those for which no homologous sequences could be found

(Pavlidis et al., 2001). If the proteins interacting with regulatory patterns are known, this ap-

proach is a promising way to elucidate regulatory networks.

As a summary for the annotation process, figure 2.5 gives a schematic overview of the flow

of information in an annotation pipeline.

2.2.3 Assessment of genome annotations

Annotation is a crucial task to make full use of the large volume of genomic sequence. Therefore,

it is of great importance to objectively assess the accuracy of predictions made in the annotation

process, both to know how well an automated annotation generally works, and to know which

method is best for a certain problem.
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Figure 2.5: Schematic overview of sequence annotation. The picture shows only some impor-

tant tasks of structural and functional annotation to exemplify the relations between data bases,

models, and the sequence to be annotated. The preliminary annotation is in many cases validated

by human curation.

The prerequisite to and most important factor in an objective assessment is the standard

data set used to evaluate solutions. The standard must be well-studied, but also correct, fair and

appropriate in the community’s eyes. The correctness should have been established by methods

independent of the methods being assessed; the fairness is guaranteed if no predictor had any

prior knowledge of it; the appropriateness is given if the standard is representative and large

enough for drawing meaningful conclusions.

Because sequences are usually almost immediately released to the public data bases, a data

set that is large enough and still fulfills the fairness criterion is almost impossible to obtain.

Assessments are thus often carried out on either too small (Burset and Guigo, 1996; Fickett and

Hatzigeorgiou, 1997) or partially simulated data sets (Guigo et al., 2000). The genome annotation

assessment project (GASP) by Reese et al. (2000a) therefore turned out to be an unprecedented

opportunity to assess predictions on a realistic scale: An almost 3 million base pair long and

well-studied contiguous piece of genomic Drosophila DNA had been sequenced but not yet pub-

lished. This enabled the authors to tackle with the criteria mentioned above: For an assessment

of the sensitivity, i. e., of how many of the known genes were found, they used a set of full-length
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cDNA sequences of hitherto unknown genes. As this incomplete gene set was clearly not suited

to assess the specificity, i. e., how many of all predictions turned out to be true, a second set of

complete annotations was compiled which also included previously known genes and homology

based predictions. The first set contained 43, the second 222 genes, and were therefore large

enough for a thorough comparison. Twelve groups participated in the project, making submis-

sions for gene finding, promoter recognition, repeat finding, and protein domain classification.

The best gene finding programs achieved a sensitivity of 95% and a specificity of 90% on the

base level, but only 60% respectively 40% on the level of complete gene structures3. For the

assessment of promoter recognition, a representative subset of the 222 genes was compiled (see

section 4.1). The promoter finders had a sensitivity of about 30–35%, with different specificity

depending on whether they were used ab initio or in combination with a gene finder. Domain

classifications and repeat identification were not evaluated because a correct answer was not

known for these categories. The overall results showed that the algorithms performed worse than

expected from the assessments on smaller sets; genes are sparsely arranged in the DNA of higher

eukaryotes, and false predictions are therefore likely. Consequently, the annotation of the draft

human genome by Birney et al. (2001) relied only on gene finders that also use homology or

alignment information.

So far, I have discussed the basic biological concepts and the process of computer based an-

notation of DNA sequences, and have also shown where promoter recognition fits into the larger

framework. We can therefore now turn to the specific biology of promoter eukaryotic promoters,

and to previously published algorithms to recognize them.

3Only the coding parts of genes were considered; UTRs cannot be predicted by most current gene finders.



Chapter 3

Promoters and Promoter Recognition

The topic of gene regulation has always received great attention because the key for the develop-

ment of complex organisms does not lie as much in the mere number of genes but rather in their

specific regulation and interaction. In the following, I will give a brief description of the biology

of gene regulation, particularly of DNA transcription control and the organization of eukaryotic

promoter regions. Again, this text cannot go into all necessary details but will focus on the con-

cepts relevant to this thesis. A comprehensive yet easy to read introduction to this fascinating

topic was written by Latchman (1998) from which much of the following description is inspired.

Other, mostly more recent references are cited throughout where appropriate. In the final section,

I will turn to computational approaches for promoter recognition published so far and discuss

what aspects of promoters are taken into account in current algorithms.

3.1 Gene regulation in eukaryotes

It was observed rather early that a loss of DNA content occurs only in some notable exceptions

and therefore cannot offer a general explanation for the individual protein levels found in dif-

ferent developmental stages or tissues. Rather, the process whereby DNA produces mRNA (and

subsequently proteins, see section 2.1) must be responsible for the regulation of gene expression

in eukaryotes. A number of stages leads from the initial transcription to the final protein product

(see figure 3.1 for a schematic overview). In theory, any of these stages could be used to regulate

the expression of a gene, and it has been shown that indeed all of them are targeted under one

condition or another. I will explain the stages shown in figure 3.1 and indicate how they can be

regulated, before I turn to a more detailed description of transcription control. Even though this

description suggests that all steps have to be performed in a rigorous order, evidence shows that

they are at least partly concurrent.

21
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Figure 3.1: Stages of gene regulation, after Latchman (1998). See the text for details.

1. The transcription of protein encoding genes is done by the RNA polymerase II enzyme, and

control at this level involves guiding the polymerase to the right places as well as inhibit-

ing its activity (see section 3.2). The result of transcription is the pre-mRNA or primary

transcript. A single gene can be transcribed starting from different promoters that are ac-

tive only under specific conditions, giving rise to two or more (partially) different gene

products.

2. The post-transcriptional events, which lead from the primary transcript to the final mRNA

serving as a template for translation, start with the capping of the pre-mRNA. A cap struc-

ture consists of a guanosine residue linked in an unusual way to the 5’ end of the RNA.

The cap is the place where a ribosome binds to the RNA and is also necessary to protect an

RNA from degradation enzymes.

3. Contrary to the modification at the 5’ end which involves the adding of a single nucleotide,

the 3’ end is cleaved, a large RNA is stretch removed, and up to 200 adenosines are added.
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The site of this poly-adenylation is flanked by two conserved sequence patterns where two

protein factors bind, interact, and finally cut the mRNA. Similar to the cap at the 5’ end,

the polyA tail serves as protection against degradation, and it appears to have an effect on

the translation efficiency of the mRNA. Also, more than one polyA signal can be present,

leading to different possibilities to truncate an mRNA on its 3’ end.

4. The next step in RNA processing is splicing. Apart from the splice sites at both ends of an

intron (see section 2.1), an additional less well-conserved pattern around the branch point

can be found close to the splice site at the 3’ end of an intron. Splicing occurs in a complex

structure known as the spliceosome which involves a number of RNA and protein compo-

nents and holds the upstream and downstream parts of the mRNA in the correct place while

cutting out the intron. Alternative splicing as discussed in section 2.1 has emerged to be a

crucial regulatory step, complementing transcription control and serving to deliver variants

of a single protein needed under specific conditions. Alternative splicing is regulated by tis-

sue specific factors promoting a certain splice site as well as by the ratio balance of several

proteins belonging to the spliceosome.1

5. After the mRNA has been brought in its final shape, it is transported from the nucleus

through the nuclear membrane into the right place in the cytoplasm. A number of proteins

have been identified that are believed to mediate this transport. It appears that a nuclear

export signal in such a protein is crucial to guarantee export of itself and its associated

mRNA. A few examples show that regulation may also happen at this stage, e. g. promoting

the transport of a certain splice variant of a viral mRNA in HIV infected cells.

6. In the cytoplasm, translation takes place at the organelles known as ribosomes. It is initiated

by the binding of a ribosome at the cap structure on the 5’ end. A subunit of this ribosome

then migrates along the mRNA until it finds an appropriate start codon. In rare cases, an

mRNA may contain more than one functional start codon. A key role in the subsequent

translation is played by transfer RNA (tRNA) molecules which deliver the correct amino

acid to the currently considered nucleotide triplet. tRNAs have a common characteristic

secondary structure and are bound to the mRNA by means of anti-codons complementary

to the triplet for which they carry the appropriate amino acid. Subsequently, one tRNA after

another is recruited, and a polypeptide is synthesized until the first stop codon is encoun-

tered. General control at this stage is possible by inhibiting components of the ribosomes;

specific mechanisms interact with patterns in the 5’ and 3’ UTR of the mRNA that form

characteristic secondary structures, the latter sometimes also preventing poly-adenylation
1Different proteins that are derived from the same primary transcript can also be a cause of RNA editing which

modifies single bases, thus replacing one amino acid by another or introducing a stop codon.
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which is necessary for a correct translation.

Translation is influenced by the stability of the mRNA which determines the number of

times that it is translated. A working model of this mechanism involves digestion enzymes

attached to the ribosome that either recognize the beginning of the synthesized polypeptide

or short regions in the 3’ UTR that fold into a secondary structure. RNA stability is an

effective means to control the rate of protein synthesis, especially in cases where a rapid

and transient change of a specific protein level is necessary, and is often accompanied by a

change in transcription rate.

To summarize, gene expression controls which genes are used, which modifications are car-

ried out to the transcript, and how efficiently the final product is synthesized. A clear point should

be made that gene regulation, and therefore transcription, is not a yes/no activity: Genes which

are “switched on” do not all produce the same amount of mRNA. Although analogies from the

terminology of engineering might suggest it, a cell is not a simple machine, not even at the level

of individual genes. It is a viable precondition for the correct development of an organism that

a subtle control is possible for every single product of biosynthesis. Also, if a gene is found

to be “active” under certain in vitro conditions, its activity might be dramatically enhanced or

suppressed by interactions only observable in vivo2.

3.2 Regulation at the transcriptional level

Even though regulation occurs at all stages of protein synthesis, the control on the transcriptional

level is clearly the most important. This intuitively makes sense: Why should a cell generally

sacrifice valuable energy to synthesize products whose activity is subsequently repressed, again

under the consumption of energy?

The RNA polymerase II (pol-II) enzyme has 12 subunits; but it despite its structural com-

plexity, it cannot carry out transcription by itself. It requires auxiliary factors to recognize its

target promoters, and to modulate production to react on specific environmental conditions.

The promoters of protein encoding genes can be seen to consist of a core promoter, a prox-

imal promoter region, and distal enhancers, all of which contain transcription elements, short

DNA sequence patterns that are targeted by specific auxiliary proteins called transcription fac-

tors. Transcription initiation by pol-II is regulated by those factors interacting with transcription

elements, pol-II, and also with each other, and by an open chromatin structure that enables the

factors to access the DNA.
2“In vitro” usually means “simplified conditions in experiments at a lab bench”, whereas “in vivo” refers to the

living cell.
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3.2.1 The basal transcription machinery

The common and best characterized part of promoters is the core promoter which is responsible

for guiding the polymerase to the correct transcription start site (TSS). Accurate initiation of

transcription depends on assembling a pre-initiation complex (PIC) containing pol-II and at least

six transcription factors, the general initiation factors, which have been identified over the past

20 years (see the general review by Roeder (1996), and the one by Nikolov and Burley (1997)

focusing on a detailed view on the protein structures). This complex machinery is immensely

well preserved throughout all species.

Inspection of the sequences immediately upstream of the transcription start sites showed that

a large group of eukaryotic promoters share an AT-rich sequence element around position -30.3

This so-called TATA box is the most prominent sequence element in eukaryotic promoters. De-

tailed in vitro studies have elucidated the fundamentals of PIC assembly, deriving a minimal set

of factors that suffice for transcription from a strong viral promoter containing a well-conserved

TATA box.

The TATA box is a target of transcription factor (TF) IID, or more specifically, of one com-

ponent of TFIID, the TATA binding protein (TBP). TFIID contains at least a dozen other com-

ponents known as TAFs (TBP associated factors) which also interact, directly or indirectly, with

other sequence elements. Upon binding of TBP, the DNA is strongly distorted, and sequences

up- and downstream of the TATA box are brought in close proximity. Transcription factor IIA

stabilizes this complex, even though it is not essential in all cases as originally thought and only

vital for promoters with weaker TATA boxes.

After binding of TFIID (and possibly TFIIA), this complex is recognized by transcription

factor IIB. This orients the growing complex towards the transcription start site and maybe

guides the polymerase to the exact start position. TFIIB also recruits the pre-formed TFIIF–

pol-II complex through direct interactions with both components. The binding of transcription

factors IIE and IIH to the polymerase completes the assembly of the pre-initiation complex. With

the exception of TFIID and possibly TFIIB (see below), all TFs are recruited by protein-protein

interactions, and no interactions with specific DNA motifs has been observed so far. TFIIH fi-

nally triggers the start of transcription by modification of a pol-II subunit, and unwinds the DNA

double helix in a 10 base pair long stretch downstream of the TSS. This step-wise assembly is

summarized in figure 3.2.

While the polymerase moves off down the gene, TFIIF remains associated with the poly-

merase and TFIID remains bound to the core promoter, alleviating further cycles of PIC as-
3Positions upstream of the TSS are counted backwards starting at -1, and positions downstream, including the

TSS itself, are started counting at +1.



26 Chapter 3. Promoters and Promoter Recognition

TATA-50

-50 TATA +1

+1

-50 +1TATA

-50 TATA +1

-50 TATA +1

TFIIF

TFIIBTFIIDTFIIA

pol-II

pol-II

TFIIA TFIID TFIIB

TFIIF

TFIIHTFIIE

TFIIA TFIID

TFIIBTFIIA TFIID

Figure 3.2: Step-wise assembly of the pre-initiation complex, after Latchman (1998).

sembly. Large multi-protein complexes containing pol-II and some of the transcription factors

have been reported from purification experiments. This suggests the existence of a so-called

holo-enzyme in which much of the PIC is already pre-assembled, which allows the process of

transcription initiation to happen much faster than an individual step-wise assembly would re-

quire.

As tempting as it sounds, the above description is by far a general mechanism of pol-II

recruitment. For example, the promoters of house-keeping genes (i. e. genes that are always

“switched on”) do not contain anything resembling the TATA box. In these cases, the binding

of TFIID is mediated by the initiator sequence element right at the TSS, but which is not only

present in TATA-less promoters. Chalkley and Verrijzer (1999) recently reported that some of
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Figure 3.3: Interaction of TFIID with the core promoter elements. Two distinct interactions

with TATA-driven (by TBP) and DPE-driven (by TAFs 60 and 40) promoters are shown in this

model after Kutach and Kadonaga (2000) (Inr: initiator).

the TAFs are able to directly recognize this element.

In Drosophila as well as vertebrates, sequences downstream of the initiator were also found

to have influence on basal transcription activity. Arkhipova (1995) showed that a number of short

sequence patterns are significantly over-represented in downstream sequences of Drosophila, but

found considerably weaker conservation in vertebrates. According to recent findings by Kutach

and Kadonaga (2000), a specific downstream promoter element (DPE) appears to be as widely

used as the TATA box but is less well-conserved. Its core motif is located exactly from 28 to 33

base pairs downstream of the TSS and was earlier shown to be recognized by two factors of the

TFIID enzyme (Burke and Kadonaga, 1997). A striking preference for the initiator consensus

in promoters that contain a DPE suggests a strong co-dependency of both elements. Although

evidence for downstream vertebrate elements exists, current knowledge suggests that DPEs play

a less important role in these organisms. It should finally be noted that in TATA-less promoters,

different transcription starts from several neighboring bases have been observed, and a transcrip-

tion start “site” as such does not exist. If the promoter elements are not well conserved, it possibly

is a general rule that the transcription start differs within a small range.

Sequence patterns in the core promoter. To summarize, the main sequence patterns by which

interactions with transcription factors occur in the core promoter, and which could be exploited

in a computational promoter finding system, are the TATA box, the initiator, and the downstream

promoter element (see figure 3.3). These are all known to be directly targeted by TFIID compo-

nents. Bucher (1990) was the first to systematically study the patterns of TATA box and initiator

in vertebrates, and Arkhipova (1995) extended this to the sequence elements of Drosophila, in-

cluding DPE. On the one hand, she found that the TATA box is present in at most 50% of the
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Drosophila promoters which is less frequent than in vertebrates. On the other hand, the initiator

is better conserved in fly promoters. Also, as stated above, the DPE is much more frequent in

Drosophila and appears to play the role as a downstream counterpart of the TATA box. Hence,

the machinery of transcription is well conserved throughout the whole eukaryotic kingdom, but

the ways in which it is employed in transcription regulation are not. This makes it vital to use

different models for the prediction of promoters in different organisms. It shall also be noted

that a working binding site such as the TATA box is not defined by some absolute strength but

also by the context in which it appears: Using the best hit of a TATA box model within each

promoter, instead of all above a threshold, results in a much better sensitivity and specificity of

the detection of known TATA boxes (Audic and Claverie, 1998).

TFIIA and TFIIB also have direct contact with DNA, but it has been widely believed that

these contacts are not sequence-specific. Recent experiments (Lagrange et al., 1998) that were

published during the course of this thesis suggest that TFIIB binding in humans is at least partly

influenced by a sequence motif directly upstream of the TATA box, but this is not well charac-

terized so far. Detailed studies of sequence motifs in Drosophila (Arkhipova, 1995; Kutach and

Kadonaga, 2000) revealed the TATA, initiator, and DPE motifs, but failed to detect any motif re-

sembling the TFIIB response element. So even if it might be present in a small number of cases,

it does not play an overall important role, at least in Drosophila. It is striking that this putative

sequence pattern consists almost exclusively of guanines and cytosines: Human promoters have

a very high overall GC content. This gives rise to the suspicion that the TFIIB element is to some

extent reflecting the overall human promoter sequence composition. Thus, the proven in vitro

binding of TFIIB to a sequence pattern might not play a specific role in vivo.

3.2.2 Chromatin structure in promoter regions

The large number of genes found in eukaryote genomes would render it very impractical should

all of them compete for the components of the basal transcription machinery at the same time.

Most of them are transcribed only inside a specific tissue or under rarely occurring circumstances.

Evolution has therefore found a way to effectively shut down large regions of the genome that are

not needed within a certain tissue. This also guarantees that all cells of a tissue stay committed

to expressing the same genes without actually losing parts of the genome.

Experiments have shown that even transcribed genes are still wrapped up around nucleo-

somes (cf. figure 2.2), but that the higher order condensation into solenoids is lost in active or

potentially active genes. Such genes exhibit a heightened sensitivity to a DNA digestion enzyme

that even extends for some distance up- and downstream of the transcribed regions. These less

condensed regions are not dependent on the act of transcribing but remain stably established and
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thus reflect the ability to be transcribed.

Methylation and CpG islands. In vertebrates, the open solenoid structure is closely associated

with DNA methylation: some cytosines are chemically modified and bear an additional methyl

group. In 90% of the cases, the methylation occurs in cytosines that are part of the di-nucleotide

CG.4 It was found that some CG sites are always methylated whereas for others, this pattern

keeps changing in a tissue-specific manner, and active genes appear to be un-methylated. Fur-

thermore, Antequera and Bird (1993) postulated that the upstream regions of all constitutively

(i. e., constantly) expressed genes, and also a substantial portion of other genes, are correlated

with clusters of CG dinucleotides, so-called CpG islands (Gardiner-Garden and Frommer, 1987).

Methylated CG dinucleotides are a hot spot for mutations in which the cytosine is wrongly re-

placed by a thymine, which over the course of time leads to CG depleted regions. Indeed, the CG

di-nucleotide occurs much less frequently in vertebrate genomes than expected from the mono-

nucleotide composition. CpG islands with a high number of CG di-nucleotides therefore hint at

generally low methylated regions.

DNA methylation has no direct effect on the chromatin structure, and no direct evidence for

specific protein interactions with methylated regions that are associated with chromatin structure

has been reported. On the other hand, DNA methylation is known to be stable during cell division

because the CG di-nucleotide on the opposite strand of a methylated one is also methylated.

Methylation can therefore explain the stable commission to certain groups of active genes within

specific tissues.

Histone modification. Methylation can possibly explain the majority of cases of tissue-specific

commitment in vertebrates, but in invertebrates such as Drosophila it hardly occurs (Lyko, 2001).

A number of vertebrate cases are also known where differences in methylation between express-

ing and non-expressing tissues cannot be detected. Other features of active chromatin structure

concern chemical modifications of the histones. Histone modifications either affect histone as-

sociation with each other or the DNA, or proteins interacting with histones. It is known that

one component of the TFIID enzyme as well as other transcription factors have the ability to

acetylate histones which leads to an opening of chromatin. The opposite case of de-acetylation

and therefore a negative effect on regulation is also observed. In either way, chromatin structure

could thus be changed.
4The notation “CpG” for a CG di-nucleotide is used to resemble the phosphate bridge between adjacent bases.

This avoids the possible mis-interpretation of CG as a complementary pair in the double helix.
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Chromatin structure in regulatory regions. Following the discovery that a change in the

chromatin structure of genes is necessary for their (potential) activation, further studies showed

that the DNA in the regulatory regions of active genes is even more sensitive to DNA digestion.

These hypersensitive sites are a result of either loss or modification of nucleosomes and hint at

less tightly packed DNA compared to active genes. Hypersensitive sites are furthermore not only

concentrated in the core promoter region, but exist also in other regulatory regions described in

section 3.2.3. Widely used transcription factors that bind to those regions associate with specific

proteins that indeed have the capability of displacing or modifying the nucleosomes. A common

mechanism in gene regulation is therefore the attraction of nucleosome displacing factors which

enables the binding of other factors and finally the PIC itself. The observation that nucleosome

displacing proteins have also been found in some of the holo-enzymes of pol-II perfectly fits in

that picture.

The DNA in promoter regions is furthermore likely to exist in an alternative super-coiled

conformation, the so-called Z-DNA. This conformation occurs in DNA with alternating purine

and pyrimidine nucleotides and offers an increased accessibility to the single strands of DNA,

which means that it is easier for proteins to interact with Z-DNA than with normal DNA.

3.2.3 Specific gene regulation: Sequence elements and transcription fac-

tors

So far, I have dealt with the basal transcription machinery, describing how the transcription start

site is recognized and which proteins are involved in this process, and with the chromatin struc-

ture that enables the access to genes in the first place. In eukaryotes, where each mRNA that is

transcribed encodes for only one gene5, this cannot explain how genes whose protein products

are needed in parallel are co-regulated. Very often, coordinately expressed genes do not even re-

side at close positions in the genome, but rather on different chromosomes. Such a system reflects

the greater need for flexibility in eukaryotes; for example, human α-globins on chromosome 16

are expressed at the same time as γ-globins on chromosome 11 to form working globins in the

fetus, but in adults the γ-globins are replaced by β-globins which also reside on chromosome 11.

Britten and Davidson (1969) published an early working model of such coordinated gene ex-

pression that, at an abstract level, still holds (see figure 3.4). They proposed that genes regulated

in parallel, in response to a particular signal, would contain a common regulatory element which

would cause the activation of these genes. Moreover, genes could contain more than one element,

each shared with a different group of genes. A signal would then act by stimulating a specific
5There is no rule without exception: Note the Drosophila Adh/AdhR genes that are transcribed on one mRNA.
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Figure 3.4: The Britten and Davidson model for coordinated gene regulation, after Latchman

(1998). Sensor elements A, B, and C detect changes that require a different expression and there-

fore switch on appropriate integrator genes x, y, and z. The products of genes x, y, and z then

interact with control elements, coordinately switching on appropriate genes P, Q, and R. Alter-

natively, x, y, and z can be proteins undergoing a conformational change under the presence of

specific signals which enables them to interact with the control elements.

“integrator gene” whose product would interact with a specific sequence element in several genes

at once. A gene would finally be activated if all its sequence elements had been “switched on” by

integrator gene products. Using current terminology, the integrator gene is considered as encod-

ing a transcription factor which binds to regulatory sequence elements, the transcription factor

binding sites, and activates or suppresses a specific group of genes. Supplementing the orig-

inal theory, a transcription factor can be activated not only by de novo synthesis but also by

changing the inactive state of the pre-existing protein into an active one, often by means of post-

transcriptional regulation (see section 3.1). The latter possibility is actually the more frequent

one, as a regulation of transcription factors by transcriptional control simply pushes the problem

onto a higher level.

The proximal promoter region. Many of the regulatory elements serving as transcription fac-

tor targets are located in the proximal promoter region, i. e. directly upstream of the core pro-
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Figure 3.5: The promoter of the human hsp70 gene. As an example, this promoter contains

non-specific (CCAAT, GC, AP2 boxes) as well as specific (HSE, heat shock element) control

elements in its sequence (Latchman, 1998). The numbers in this schematic structure refer to the

position relative to the transcription start site.

moter. These factors can either influence (both suppress or alleviate) the binding of the core

promoter components, or the chromatin structure (see section 3.2.2), or both at the same time.

The first group thus interacts with components of the general initiation factors, such as the TATA

box binding protein or its associated factors, or alleviates the binding of other factors which then

interact with the basal machinery. This only works when considering the 2-d or 3-d DNA struc-

ture — in a linear DNA sequence, the binding sites are too far away from each other to enable

direct contacts of their TFs. An example for a synergistic interaction of two transcription fac-

tors with two TAFs is reported by Verrijzer and Tjian (1996): The two Drosophila factors bicoid

and hunchback interact with specific TAFs and lead independently to an already improved tran-

scription activation, which is nonlinearly increased when both factors are present. Therefore, the

complex structure of TFIID is not necessary to bind to the DNA and recruit the polymerase, but

rather serves as a modular machinery that offers a vast number of possibilities to interact with.

Some transcription factors work in a non-specific way, i. e. they merely serve to increase the

production rate of the basal machinery and can thus be found in a variety of genes. Sequence

elements that interact with these factors are the CCAAT and GC boxes in vertebrates, or the

GAGA box in Drosophila. Other factors work in a very specific way and are contained in only a

small number of promoters (see figure 3.5 as an example for a human promoter). Transcription

elements can be present in several copies in one promoter and are very often organized in dyad

symmetry, i. e. one of two identical sequence parts is contained on the sense and the other on

the anti-sense strand, thus forming a palindrome. Orientation therefore does not matter, but this

is also true for many non-palindromic patterns. In some cases, elements responding on related

stimuli are also related on the sequence level, such as in the case of hormone receptor binding

sites, some of which are made up by the same repeat of the sequence GGTCA, but with variable

spacing and either as a direct or palindromic repeat (see the examples in table 3.1).

Enhancers and silencers. Apart from the proximal promoter regions, it has been discovered

that sequences as far away as several kilobases have a major influence on transcription. Although
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Signal Regulatory element

Palindromic repeats

Oestrogen RGGTCAN3TGACCY

Glucocorticoid RGRACAN3TGTYCY

Direct repeats

Vitamin D3 AGGTCAN3AGGTCA

Thyroid hormone AGGTCAN4AGGTCA

Table 3.1: Various hormone response elements. An N indicates any base; R indicates a purine,

Y a pyrimidine (see appendix A). Note that these are consensus sequences — i. e. the most

frequent base is given at each position — but that individual binding sites may have mutations

differing from the consensus.

these sequences cannot act as promoters on their own, they are able to enhance or suppress the

activity of transcription up to three orders of magnitude. Interestingly, such a sequence cannot

only be far away from the promoter it affects, but also both upstream or downstream and even

within an intron of the gene which promoter it enhances. As with many transcription factors,

the orientation of the sequence, i. e. whether it is on the sense or anti-sense strand, is also not

important for its functionality. These enhancers or silencers often exhibit a tissue-specific activ-

ity, and they are often composed of the same sequence elements found in (proximal) promoters

that mediate tissue-specific expression. Like transcription factors binding to promoters, factors

binding to enhancer elements influence gene expression both by changing the chromatin struc-

ture and by interaction with proteins of the transcription apparatus. Because of the very large

distance of the enhancers from the affected promoters, the second mechanism is especially puz-

zling, and the most commonly accepted explanation in concordance with experimental results

involves the looping out of intervening DNA. A particular enhancer can affect more than one

promoter, and can exert its influence also on the transcription of other genes when transferred

into their neighborhood.

Locus control regions. A high level of control of the expression of several genes at once is

achieved by so-called locus control regions (LCRs). These regions were found to be crucial for

the activity of all the genes in a cluster, e. g. the α- or β-globin genes. They act independently

of their position and over a large distance, and without them no single promoter in a cluster

can attract the polymerase in vivo. As with enhancers, some elements that are present in pro-

moter regions are also found in LCRs, and they are likely to have a long-range influence on the
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chromatin structure. Several LCRs were also found to contain sequences which are involved in

the attachment of chromatin domains to a protein scaffold, the so-called nuclear matrix. An LCR

controlled region may therefore constitute one solenoid loop, the structure of which — and there-

fore general accessibility to transcription factors — is regulated as a single unit. It also serves as

an insulator to block the activity of outside enhancers.

3.3 Approaches for computational promoter recognition

The previous section introduced the underlying biology of transcription control in eukaryotes,

and the following pages now turn to the description of approaches that deal with the identifica-

tion of regulatory DNA sequences by computational methods. The first description of common

patterns in eukaryotic promoters, in the form of weight matrices which are equivalent to linear

hidden Markov models, can be found in the ground-breaking publication by Bucher (1990). In

this thesis, I specifically concentrate on the general identification of proximal promoter regions,

although I will shortly discuss related approaches to model specific sub-groups of promoters. For

more information on models for single transcription factor binding sites, the reader is referred to

the reviews by Werner (1999); Stormo (2000a). I also do not discuss prokaryotic promoter recog-

nition because promoters in lower organisms have a different, somewhat less complex structure.

Similar to gene finding approaches, existing methods for general promoter prediction can be

classified into two different categories, ab initio and homology based. Fickett and Hatzigeorgiou

(1997) wrote a noteworthy review on ab initio predictors and compared their performance on

a set of independent sequences. Even though the set they used is too small to allow for precise

conclusions, and even though the paper is outdated by now, it is still of great influence because

it judged a large number of systems in an unbiased and sound way. One of the first reviews on

homology based methods was written by Duret and Bucher (1997); this approach is also termed

phylogenetic footprinting.

3.3.1 Ab initio prediction

Computational methods that aim at the identification of promoters ab initio tackle the task by

establishing a model of promoters — and possibly non-promoters as well —, and then use this

model to search for an unknown number of promoters in a contiguous DNA sequence. Depending

on how the model captures promoter features, different sub-groups of ab initio predictors can be

distinguished:
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• Search-by-content algorithms identify regulatory regions by using measures based on the

sequence composition of promoter and non-promoter examples.

• Search-by-signal algorithms make predictions based on the detection of core promoter ele-

ments such as the TATA box or the initiator, and/or transcription factor binding sites outside

the core.

There are also methods that combine both ideas – looking for signals and for regions of

specific composition. To achieve an exact promoter localization, a system output should include

the prediction of the transcription start site. Search-by-content methods do not provide good

TSS predictions because they do not consider any positionally conserved signals. To enable the

comparison of different algorithms, and to account for possible multiple start sites, predictions

are usually counted as correct if they are made within a window around an experimentally verified

start site.

In the following, I will discuss the most important publications. For a description of the

underlying algorithms, the reader is referred to the text books such as Durbin et al. (1998); Baldi

and Brunak (1998), and also to chapters 5 and 7 of this work. All of the approaches deal with

primate or vertebrate promoters; even though some of them were certainly applied to data from

other eukaryotic organisms, none was specificly re-trained.

Search-by-content. This group of approaches considers features derived from long promoter

and non-promoter sequences, and uses the established model to calculate scores on moving se-

quence windows. For example, Audic and Claverie (1997) train Markov chain models of different

orders on promoter and non-promoter sequences (see section 5.2), and classify a sliding window

of 250 bp using Bayes’ rule. They use only one Markov chain model trained on intron and exon

sequences as background, and take the non-promoter sequences of the data base records from

which the promoters were derived as negative samples. There are several shortcomings in this

approach: First, the training sequences for non-promoters are not checked for redundancy, and

both coding and non-coding sequences are represented by the same model. Also, only sequences

from the initiator to -250 are included, and downstream promoter sequences are neglected. The

reason that most promoter sets use regions of 250–300 bases upstream of the TSS lies in the

observation that the greatest increase in transcription factor binding site density is observed in

the region from -200 on (Prestridge and Burks, 1993).

A similar approach based on oligomers6 of length six is proposed by Hutchinson (1996). His

model distinguishes between background classes for coding and non-coding sequences and are

trained on 300 base pair long sequences, the promoters ranging from -300 to the start site. Instead
6An oligomer refers to a short biopolymer sequence of fixed length.
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of modeling the sequence classes by Markov chains, two discriminative measures D1 and D2 are

defined as follows:

Di(w) =
Ff (w)

Ff (w) + Fbi
(w)

(3.1)

Ff (w) denotes the absolute count of word w in the foreground promoter sequences and Fbi
(w)

the absolute count in background sequences (i = 1: non-coding; i = 2: coding). Hutchinson

uses words of length six, so w denotes one of the 4096 possible hexamers. 196 out of the 200

top rating hexamers according to the D1 measure contain at least one CG di-nucleotide, showing

the strong bias for non-methylated regions in the promoters (see section 3.2.2). To apply the

system on unknown sequences, a 300 base pair window is shifted in steps of 10 bases, and

identifies the window with the highest average D1 value that also exceed a threshold on D2. As

an additional restriction, the sequence is assumed to contain exactly one promoter. Because no

apparent correlation of scores and true and false positives is seen, Hutchinson also suspects that

a relative score maximum is important for a working promoter. The underlying restriction of one

promoter per sequence, though, is not justified any longer in the post-genomic age where whole

genomes are scanned for putative promoters.

The idea of discriminative counts is also employed by Scherf et al. (2000). They construct

“classifiers” for two classes by exclusively assigning certain sequence groups to one class if

their occurrence ratio in the sequences of this particular class versus the other class exceeds a

certain threshold. Sequence groups contain a motif of a certain width plus a limited spacer of

arbitrary nucleotides that may occur within the motif. These classifiers are then used together to

classify a sequence window of 100 bases in the following way: Each classifier determines how

many groups in each class are hit, and the window is regarded as a promoter if the promoter

class has the largest number of group hits for all classifiers, in this case for promoters against

the background classes coding, non-coding, and 3’ UTR. In a post-processing step, neighboring

windows that are assigned to the promoter class are merged, and a region is finally reported

if it extends for at least 200 bases. The promoter training sequences range from -500 to +50,

and redundant sequences in the training set are removed (cf. chapter 4). Because the authors

noted that their approach consistently causes “shadow predictions”, i. e. predictions at the same

position on the opposite strand, the detected regions are not strand specific and also quite large —

roughly between 500 and 2,000 base pairs. In a recent publication where they applied the system

on the complete sequence of human chromosome 22, they additionally report that, as in the case

of the approach by Hutchinson (1996), the predictions are highly correlated with CpG islands.

This means that their approach is very helpful to narrow down the search region, but misses a

large portion of non-CpG island associated promoters.
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A different way of search-by-content has recently been proposed by Ioshikhes and Zhang

(2000). They concentrate on CpG island associated promoters and come up with features that

help to distinguish between promoter-associated and other CpG islands (see section 6.1). A CpG

island is generally defined by a minimum length of 200 bp, a GC content of at least 50 %, and a

ratio of observed to expected CG di-nucleotide frequency of more than 0.6. CpG islands contain-

ing a TSS are found to have a greater average length, higher GC content and CG ratio than other

CpG islands. The combination of the three feature variables with quadratic discriminant analysis

leads to successful recognition.

Search-by-signal. In contrast to search-by-content methods which work with overall features

derived from sequence classes, search-by-signal approaches are based on models of specific pat-

terns in promoters, i. e. models of transcription factor binding sites. Thereby, either extensive

lists of binding sites from transcription factor databases are used, or an exact modeling of the

core promoter is attempted.

After it had been found that the detection of single patterns such as the TATA box is far from

being both sensitive and specific enough, the combination of several patterns was pioneered by

Prestridge (1995). First, he determined the occurrence of known transcription factor binding sites

that were compiled from the literature. The hit ratio within promoters and non-promoters is then

used as a measure of reliability. To look for promoters, the ratio scores of binding site hits within

a window of 250 bases are summed up, and this sum is increased by a somewhat arbitrary value

if a TATA box is observed within the last 50 bases of the window. A promoter is predicted if the

sum finally exceeds a pre-defined threshold. The main problem of this approach lies in the way

the transcription factor binding sites are used: they are represented as strings and therefore need

an exact match to count, certainly too inflexible for many degenerate binding sites.

Owing to the ideas of the previous approach, and somewhat similar to the system of Scherf

et al. (2000), Chen et al. (1997) build their recognition system on both over-represented oligonu-

cleotides and a collection of weight matrices. They try to overcome the problem of Prestridge’s

approach by determining the over-representation of all oligonucleotides, by non-strand-specific

occurrence ratio or χ2 significance of promoters with respect to non-promoters. Additionally,

weight matrix models for frequent transcription factor binding sites are added to the model if

they have a considerably larger amount of hits within promoters than in non-promoters. Scan-

ning for promoters is done in a similar way to Prestridge, but the scores are based on absolute

counts and not on the occurrence ratios. The thresholds to decide whether the oligonucleotides

and weight matrices are to be added to the model, and how many hits are to be encountered to

regard a sequence as promoter, are chosen ad hoc. If a sequence is believed to be a promoter, an

attempt to detect a TATA box is made. If no TATA box is present, the orientation of the promoter
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cannot be determined.

The exact modeling of core promoters is in many cases based on artificial neural networks.

Reese (2001) trains two time-delay networks for the TATA box and the core promoter element

which are able to detect a pattern even if it does not occur at a fixed position within the considered

input windows. This is achieved by receptive fields in which the nodes use the same shared

weights. The two sub-nets are then combined in another time-delay net to allow for non-linear

weighting of the two patterns. The networks are trained on large sets of representative positive

and negative samples, and extensive weight pruning keeps the networks from over-adapting to

the data.

The architecture of Knudsen (1999) is based on an ensemble of multi-layer perceptrons for

binding sites. In contrast to the previous approach, the individual networks are supposed to learn

the most prominent sequence patterns in an un-supervised way. Apart from input nodes for se-

quence patterns, each of the networks has an additional input node which is fed with the strongest

activation of the other networks on the same input. This prevents the networks from modeling

the same sequence motif. Knudsen compares several approaches with four subnets. In the first

one, all nets are trained with a randomized algorithm that aims at the maximization of the corre-

lation coefficient of promoter and non-promoter sequences. After the training, three of the four

networks recognize TATA-box-resembling features, whereas the fourth does not show a signifi-

cant preference for known patterns. In a second experiment, the subnets are initialized with the

four common motifs that were described by Bucher (1990) — TATA box, initiator, CCAAT and

GC elements. A third experiment uses the parameters from Bucher (1990) and only trains the

inhibitory weights on the input nodes from other subnets, which surprisingly turns out to be the

most successful approach. This is possibly due to the choice of downstream promoter regions as

negative examples which leads to bad results in the two approaches where parameters are indeed

trained from the data.

Bucher’s weight matrices for TATA box and initiator are also used within the built-in pro-

moter state of the GenScan system (Burge and Karlin, 1997), along with an additional spacer

state. The first eukaryotic promoter recognition module included in a gene finding system was

described by Matis et al. (1996), but it depends on other signals such as a start codon and a

coding region in a reasonable distance downstream, and is restricted to TATA box containing

promoters. In contrast to the GenScan system which is able to partially parse a DNA sequence

and therefore also to provide isolated promoter predictions, the latter approach relies on com-

plete gene structures and is therefore not an ab initio predictor per se. Finally, studies by Ohler

(1995) and Pedersen et al. (1996) describe the usage of hidden Markov models trained on either

core elements or the longer upstream promoter sequences, but no complete systems for promoter

recognition are reported.
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Combined methods. Solovyev and Salamov (1997) developed a promoter finding system that

combines a TATA box weight matrix, triplet preferences in the initiator, hexamer frequencies in

three regions -1 to -100, -101 to -200, and -201 to -300, and hits of transcription factor binding

sites by linear discriminant analysis. It therefore integrates specific models for binding sites in-

side and outside the core promoter with general statistics that are also used by search-by-content

approaches.

Zhang (1998) divides a promoter region in eight consecutive segments of 30 bases, ranging

from -160 to +80, and in 5 segments of 45 bases, ranging from -145 to +80. For each segment,

he uses discriminative word counts analogous to equation 3.1: The sequence within the consid-

ered window makes up the foreground, the sequences within the left and right neighbor window

the background counts. The feature variables consist of the mean discriminative count within

each window, and are combined using quadratic discriminant analysis. Zhang does not use non-

promoter sequences in his model and describes his predictor as a tool to locate the core promoter

within a window of 1,000–2,000 base pairs.

Shortcomings of ab initio approaches. After the description of previous approaches, this sec-

tion continues with a discussion on the limitations and differences of them.

First of all, an exact prediction of the TSS can only be made if the model is based on elements

within the core promoter. This is one of the notable differences between search-by-content and

search-by-signal methods: Even though some of the first group predict TSSs, based on a max-

imum in the prediction score, the mean distance from the annotated transcription start sites is

usually larger than with signal based approaches. A modeling of the core promoter alone, though,

is not specific enough, and these approaches (Reese, 2001; Knudsen, 1999) have high false pos-

itive rates. On the other hand, methods that look for exact string matches of TF binding have

low true positive rates: most binding sites are degenerate, and it is not very common that a new

instance looks exactly like the few ones collected in the data bases. In this light, an algorithm that

combines a core promoter model with statistics of extended regions appears to be a promising

way.

It is also important to look at the way how dependencies both within and across the signals

are captured. For example, it can be expected that the GenScan approach to linearly combine the

TATA box and initiator weight matrices is not as successful as the time-delay network approach:

Neural networks are able to represent joint distributions on the whole patterns and therefore

take dependencies among distant nucleotides in the same signal into account. The additional

combination of several sub-networks also allows for a non-linear combination of the signals, as

does the quadratic discriminant analysis.

To some extent, shortcomings are certainly due to inappropriate background training and
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core TF content CpG > 1 repres. non-

author promoter binding features island non-prom. non-prom. linear

signals sites features classes sets correl.

Audic x —

Hutchinson x x —

Scherf x x x —

Ioshikhes x — — x

Prestridge x x x

Chen x x x

Reese x x x x

Knudsen x (x) x

Solovyev x x x o o

Zhang x — — x

Table 3.2: Properties of promoter finding approaches. An “x” indicates an existing property, a

blank that the property is missing. An “o” tells that the information could not be extracted from

the literature. A dash means that the property does not make sense in the context of the program;

for example, the approach by Zhang looks for start sites within promoters and does therefore not

contain any non-promoter classes.

data: distinctive background classes are represented by only one model (Audic and Claverie,

1997), and the negative set is not cleaned for redundancy or simply badly chosen (e. g. down-

stream sequences in the approach by Knudsen (1999)). Table 3.2 compares the discussed ap-

proaches by means of the discussed properties.

The assessment of eight promoter finders by Fickett and Hatzigeorgiou (1997) provided a

unique source of information on the real-scale application of the systems. It showed that most

of the publications had reported too reliable a performance; in fact, many authors had simply

extrapolated the false prediction rate from the number of predictions obtained on a small nega-

tive set. Although the number of promoters in the assessment test set was too small to allow for

an exact ranking, some tendencies were noteworthy: A weight matrix for the TATA box alone

provided a recognition rate hardly above chance, and although there was a large difference in the

number of total predictions, the ratio of false and true predictions was very similar for all meth-

ods. The algorithms correctly predicted 13–54 % of the promoters and had false positive rates of

1/460 up to 1/5,520 base pairs, where the predictor with the highest true positive rate also had the

highest false positive rate and vice versa. False positive rates might in some cases be caused by
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enhancers that were recognized as promoters because they often contain the same binding sites

found in promoters. No publication so far attempted at an explicit distinction between enhancers

and promoters.

The performance of recent approaches is better: Ioshikhes and Zhang (2000) achieved a

recognition rate of 93 % of CpG island associated promoters (i. e., a CpG island within -500

up to +1500), which translates to an overall sensitivity of 47 % and a specificity of 34 % on a test

set of 135 promoters. This is similar to the results of (Scherf et al., 2000) who reported 43 % sen-

sitivity and specificity, albeit on a different set. In their recent analysis of human chromosome

22 (Scherf et al., 2001), about 45 % of the previously known genes had a hit in the region of

−2000 up to +500, with a total specificity of about 40 %. Again, these programs do not attempt

to predict an exact TSS, but report non-strand-specific regions of roughly 0.5–2 kilobases in size.

It also appears that these approaches are successful on a large scale because of the restriction to

or correlation with the subset of CpG-island-associated promoters, even if the modeling did not

start from this assumption in the case of Scherf et al. (2000).

Physical properties. From the discussion above, it can be seen that almost all approaches are

exclusively based on sequence properties of DNA and do not exploit physical properties to re-

flect the distinct chromatin structure observed within promoters. Merely the promoter-associated

CpG island identification by Ioshikhes and Zhang (2000) can be somewhat regarded as an excep-

tion. The only approach known to the author to classify promoters based on physical properties of

DNA so far has been published by Lisser and Margalit (1994) and deals with E. coli, i. e. prokary-

otic, sequences. For a set of promoters and non-promoters, profiles for four different properties

were computed (see chapter 6). The profiles were divided in five non-overlapping consecutive

segments defined by the two sequence elements present in prokaryotic promoters: the -35 and

-10 box. The mean values of each property and each segment then served as feature variables

for a linear discriminant analysis. Although the authors did achieve a good classification per-

formance on a set of promoters and coding sequences, they did neither use their system to look

for new promoters in long sequences, nor did they integrate sequence and profile features. Pro-

files of eukaryotic promoter regions were calculated for a number of properties (Pedersen et al.,

1998; Babenko et al., 1999), but no attempt to classify eukaryotic promoters by means of profile

features has been previously published.

3.3.2 Prediction by homology

A completely different approach to identify promoters, or regulatory elements in general, is the

identification of regulatory sequences in the upstream regions of related genes that are conserved
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across different species. Here, the idea is that evolutionary pressure keeps the regulatory patterns

free of mutations, whereas the surrounding DNA without specific function will accumulate mu-

tations. In analogy to “footprinting” experiments in the wet lab which digest the bulk of DNA but

leave intact the sequences in regions where proteins bind, this approach has been dubbed phy-

logenetic footprinting. Its popularity increases with the advent of the complete sequences from

several model organisms. Duret and Bucher (1997) describe phylogenetic footprinting applica-

tions, and excellent recent reviews on these approaches in the context of genome wide analyses

were written by Fickett and Wasserman (2000) and Pennacchio and Rubin (2001).

Phylogenetic footprinting is carried out by specialized alignment algorithms. Standard dy-

namic programming approaches do not obey the additional biologically meaningful restrictions

that can be imposed: Sequences shall contain conserved blocks that represent one or more bind-

ing sites, and very low similarity otherwise. How much this corresponds to reality depends on

the organisms from which the sequences are used. Organisms that are too closely related will

show too much overall similarity; in distant organisms the underlying regulatory pathway might

have changed, in which case the sequences contain different binding sites.

Two practical examples where human-mouse phylogenetic footprinting was one step leading

to the identification of regulatory elements have recently been reported (Wasserman et al., 2000;

Hardison, 2000).

Shortcomings of homology approaches. Phylogenetic footprinting is a completely different

way to look for regulatory regions; it does not employ a model of what to look for, but rather

identifies the common patterns found in two or more sequences. As with content based ab ini-

tio approaches, homology based approaches cannot be expected to deliver exact predictions of

the transcription start site. If sequences from two organisms in the right evolutionary distance

are chosen, it is an effective means to approximately locate regulatory regions, not necessarily

restricted to the proximal promoter region. It is therefore best used as a means to narrow down

the search region, either for ab initio promoter finders or for methods that identify binding sites

common to a group of sequences (see chapter 9).

3.3.3 Models for promoter sub-classes

The first publication ever describing a computational prediction of eukaryotic promoters dealt

with specific models for heat-shock and glucocorticoid elements (Claverie and Sauvaget, 1985).

They consist of two consensus sequences separated by a fixed length spacer sequence. This pio-

neered the usage of specific models for certain promoter sub-classes. Whereas a single binding

site is not specific enough to reliably detect real promoters, such a combination of two elements
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can already greatly increase the specificity (see Werner (1999) for a review of these simple ap-

proaches). Wagner (1999) describes a clean statistical framework for the detection of significant

clusters containing multiple binding sites of one or two factors, regardless of their number or

distance relative to each other.

In many cases, though, the story is more complicated. Wasserman and Fickett (1998) exam-

ined the promoter sub-group of muscle-specific genes. They found that most promoters contain

some out of a group of specific binding sites, but their number, occurrence and distance is ap-

parently not hard-wired. In this case, simple models will fail. Wasserman and Fickett (1998)

therefore propose a logistic regression function that uses the best hits of weight matrices for

commonly observed factors within a specific window.

The Bayesian approach by Crowley et al. (1997) could also be a suitable way to detect a

sub-group of promoters. They start from a group of binding site motifs and raise the assumption

that their occurrence in regulatory regions is remarkably different from the one in non-regulatory

DNA sequences. Placing priors on the number and length of regulatory regions that are expected

in a sequence, they calculate the a posteriori probability that a certain position is within or outside

a regulatory region by a sampling approach.

Pavlidis et al. (2001) use another way to combine frequent patterns, in their case within a

modular hidden Markov model with sub-models for the individual binding sites. They do not

use this model to search for promoters, but rather classify the function of genes based on their

promoter regions, using the best path through the model as a feature vector for a support vector

machine. This appears to be a promising approach in combination with data from gene expres-

sion experiments. In contrast, constructing specific models to look for promoters of a sub-group

within genomic sequences will, to some extent, remain a special case because of the frequent

lack of the necessary amount of data. Specific models are certainly a good way to identify en-

hancers that simply consist of a cluster of specific binding sites, but they cannot satisfy the need

for reliable models for general recognition of eukaryotic pol-II promoters.
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Chapter 4

Data Sets

Over the past two decades, publicly accessible data bases have accumulated an incredible wealth

of information about biological sequences. One group of data bases aims to generally collect all

DNA and protein sequences; examples include the international nucleotide sequence database

collaboration of Genbank, European Molecular Biology Laboratory (EMBL) database and DNA

Database of Japan where the publicly funded genome projects deposit their sequences (Wheeler

et al., 2001; Stoesser et al., 2001; Tateno et al., 2000) or the SwissProt collection of confirmed

proteins (Bairoch and Apweiler, 2000). Another group collects sequences related to specific

problems.

The notorious difficulty of promoter recognition is partly due to the limited amount of reli-

ably annotated training material. The experimental mapping of a TSS is a laborious process and

therefore not routinely carried out, even if the gene itself is studied extensively. In the field of

transcriptional regulation, the Eukaryotic Promoter Database (EPD) maintained by Perier et al.

(2000) and available at http://www.epd.isb-sib.ch is therefore of great interest. The database cu-

rators extract experimentally proven pol-II promoter sequences of higher eukaryotes and their

viruses from the literature and cross-link them to EMBL data base entries. If possible, entries

contain the sequence from -500 to +100 relative to the TSS, but a minimum of only 45 bases be-

tween -49 and +10 is required. EPD also contains a representative subset which marks only one

representative for each group of highly homologous sequences (> 50 % identical between -79

and +20) and therefore avoids the danger of over-representation of closely related entries. This

subset is especially suited for computational analyses: If data sets are not checked for redundant

entries, the machine learning algorithms are inevitably biased to favor sequences similar to the

over-represented ones, which is generally not desired. In April 2001, EPD release 66 contained a

total of 1390 entries, 905 of which belonged to the representative subset. Another important col-

lection related to eukaryotic promoters is TRANSFAC (Wingender et al., 2001), which contains

45
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both protein entries of transcription factors as well as DNA entries of their binding sites.

As described in chapter 2, much of the annotation of genomes is based on computational

tools which need to be trained on reliable data sets. The data bases mentioned above provide

a good source from which one can start to construct representative sets of confirmed genes and

regulatory sequences. The goal when generating these data sets is to make them relatively “clean”

and to ensure that each sequence conforms to specific criteria such as minimum length or non-

ambiguous annotations. At the Berkeley Drosophila Genome Project we therefore used restrictive

filters which were run on the data bases to create high-quality data sets for gene finding and the

recognition of promoters and splice signals (Reese et al., 2000a). Each set is divided into a

number of disjoint parts which can be used for a cross-validated evaluation, i. e. repeated runs of

training and testing on different sets to obtain meaningful results.

The aim was to provide common sets to be shared among various research groups as a sta-

ble basis for the evaluation and comparison of different methods for the analysis of human and

D. melanogaster DNA sequences. Therefore, we made our ready-to-use training and test sets

available and encouraged researchers in the community to use these common datasets for the

development of their methods. Common data sets allow also a fair and rigorous scientific com-

parison between different methods, as it was done in the Genome Annotation Assessment Project

(Reese et al., 2000a, see also section 2.2.3) where these sets were widely used by participat-

ing groups. The sets are available at http://www.fruitfly.org/sequence/human-datasets.html and

http://www.fruitfly.org/sequence/drosophila-datasets.html.

4.1 Drosophila data sets

Our sequence sets for the training of promoter recognition models consist of three parts: promoter

sequences, coding sequences (CDSs), i. e. exon sequences outside the untranslated regions, and

non-coding (intron) sequences. All sequences were to have the same size of 300 bp. The goal

was a set of three disjoint and equally sized parts to allow for cross-validation experiments.

Starting point for the non-promoter sequences was a set of 275 multi-exon genes collected

from Genbank version 109 (1999). Genbank was searched for sequences containing single

Drosophila genes, i. e. ranging at least from start through stop codon. The sequences were ob-

tained on the genomic level rather than by cDNA sequencing. Only one CDS annotation was

allowed to discard known alternatively spliced genes. No in-frame stop codons were accepted,

and the splice sites were required to follow the minimal consensus (GT at the 5’ end and AG at

the 3’ end). Pseudo genes or entries marked as putative or predicted were excluded. Finally, the

set was checked for multiple closely related entries, and those with more than 80 % identity as
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computed by the program BLAST (Altschul et al., 1990) were discarded. This set was used to

train the GENIE gene finder (Reese et al., 2000b) for the annotation of the Drosophila genome.

The coding sequences were extracted as follows:

• The whole GENIE set of 1999 with genes containing at least two exons was split into three

subsets with an equal number of genes each. By doing so, sequences from one gene are

guaranteed to be part of only one subset.

• The exons were concatenated to form contiguous coding sequences.

• These complete CDSs were cut consecutively into 300 base pair long non-overlapping se-

quences. Shorter sequences and remaining sequences at the end were discarded.

• Because of the different length of the contiguous sequences, the files contained a different

number of sequences (433–492). To ensure an equal amount of training/validation/test data

for every cross-validation experiment, the number of sequences in each file was reduced to

the smallest number (433). This was done by skipping parts of long sequences not to run

into the danger of missing whole genes. This ensures that one can average over the results

from different cross-validation experiments; especially the cross-correlation coefficient that

is used as one criterion of success (see section 7.3) is known to depend on the ratio of

positive and negative sample size (Baldi et al., 2000).

Some single ambiguous (i. e., non-ACGT characters) in the sequences were randomly re-

placed, as well as in the intron sequences that were extracted in the following way:

• Starting point was again the complete 1999 GENIE multiple exon genes set. Again, it was

split in three subsets, each containing the introns from an equal number of genes.

• All introns were cut consecutively into 300 bp long non-overlapping sequences. Shorter

sequences and remaining sequences at the end were discarded.

• Because of the different length and number of the intron sequences, the files contained a

different number of sequences (121–136). Like above, the number of sequences in each file

was reduced to the smallest number (121).

The promoter data was generated as follows:

• All sequences of the Drosophila Promoter Database (Arkhipova, 1995, Harvard University)

were taken as a starting point.

• The subset marked as EPD drosophila entries were discarded, and all Drosophila entries of

EPD release 63 independent subset (August 2000) were added.
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• Because many entries did not contain sufficiently long sequences, they were aligned to the

complete Drosophila genome (Altschul et al., 1990), and 300 base pair long sequences from

-250 to +50 were taken from the genomic sequence. This left 247 entries. Some ambiguous

nucleotide symbols were randomly replaced.

• These sequences were split into three cross validation files with 82 promoter sequences

each.

Each part therefore contains three sequence files to be used for threefold cross-validation. The

complements of coding and non-coding sequences are also used as data sets for non-promoters.

As a whole, I refer to these data as Drosophila training set.

Genomic test sets. Apart from a high-quality set of sequences suited for training, a large set

of promoter annotations in contiguous DNA sequences has to be collected. Only this enables us

to assess the results of predictors within a real-world application. However, building such a set

for the evaluation of transcription start site predictions or, more generally, for promoter recogni-

tion, is difficult. Here, the publication of high-quality annotations of a large contiguous genomic

sequence, the Adh region (Ashburner et al., 1999), provided a most welcome opportunity to

generate a high number of reliable annotations. Even for this well-studied region, almost no

experimentally confirmed annotation of transcription start sites existed. As the 5’ UTR regions

in Drosophila can extend up to several kilobases, we could not simply use the region directly

upstream of the start codon. To obtain the best possible approximation, we took the 5’ ends

of annotations from (Ashburner et al., 1999) where the upstream region relied on experimental

evidence (the 5’ ends of full-length cDNAs) and for which the alignment of the cDNA to the ge-

nomic sequence included a consistent annotation of the gene structure. The resulting set contains

92 genes out of the 222 original annotations. The 5’ UTR of the 92 selected genes has an average

length of 1,860 base pairs, a minimum length of 0 base pairs (when the start codon was annotated

at the beginning, due to the lack of any further cDNA alignment information; this is very likely

to be only a partial 5’ UTR) and a maximum length of 36,392 base pairs. 17 genes had UTRs

longer than 1000 base pairs. Two of the promoters were contained in our collection of training

sequences described above. The set was used within the Genome Annotation Assessment Project

(Reese et al., 2000a).

4.2 Vertebrate data sets

The vertebrate set was assembled in the same manner as the Drosophila set, but comprises a larger

amount of sequences. It also consists of subsets of promoter, coding/exon, and non-coding/intron
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sequences, each of which is split in five equal-sized parts to be used for cross-validation.

For the CDS sequences, starting point were five out of seven files (with 330 out of 462

genes) from the 1998 GENIE human multiple exon genes set, extracted from Genbank version

105 according to the same criteria as the Drosophila set. The original idea was to leave some

sequences aside for an independent evaluation of an integration into a gene finding system. The

concatenated exons were again cut into 300 bp long consecutive non-overlapping sequences, and

shorter sequences and remaining sequences at the end were discarded. Again, the parts contained

a different number of sequences (178–192). The number of sequences in each file was reduced

to the smallest number to have an equal amount of sequences in each part.

The intron sequences were also generated from five out of seven files from the 1998 GENIE

multiple exon genes set by cutting them into 300 base pair long non-overlapping sequences.

Shorter sequences and remaining sequences at the end were discarded. Because of the different

length and number of the intron sequences, each part contained once more a different number of

sequences (869–1722) and was therefore reduced to the smallest number.

The promoter data was exclusively taken from EPD, extracting all vertebrate sequences (ex-

cept retroviruses) of the independent subset out of release 50 (575 sequences)1. Taking not only

human but all vertebrate sequences is justified because of the highly similar transcription machin-

ery. About half of the sequences were of human origin. Entries with less than 40 bp upstream

and/or 5 bp downstream were discarded, leaving 565 entries. Out of these, 250 bases upstream

and 50 bases downstream were extracted, resulting in 300 bases long sequences with flanking

ambiguous nucleotides in some cases because of lacking data in the beginning and/or end of the

promoter region. These ambiguous symbols were randomly replaced. The set was split in five

subsets with 113 sequences each. As a whole, I refer to these data as human training set.

Genomic test sets. As test sets for the vertebrate model, two collections of well-mapped pro-

moters were taken. One was used by Fickett and Hatzigeorgiou (1997) for an assessment of

promoter prediction programs and contains 24 promoters in 18 rather short but well studied ver-

tebrate sequences, ranging in length from 565 to 5,663 bp. The other one comprises 20 exactly

mapped transcription start sites of the human cytomegalovirus (HCMV, Genbank entry X17403,

229,354 bp) and was kindly provided by Dr. Michael Winkler, then at the Institute of Clinical

and Molecular Virology of the Universität Erlangen. Because viruses exploit the transcriptional

machinery of the host cell, the vertebrate models can also be used to analyze the genomes of

vertebrate viruses.

Additionally, the complete human chromosome 22 was scanned for promoters. The original
1Release 66 in April 2001 contained the only slightly larger number of 593 sequences.
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Organism promoter CDS intron

Drosophila 74,100 389,700 108,900

human 169,500 267,000 1,303,500

Table 4.1: Amount of available training data for the human and Drosophila models. Given is

the total length in bases of all sequences for each of the three sequence groups.

Set Length No. promoters

Drosophila Adh 853,180 92

Human CMV 458,708 < 202 (20 exact)

Fickett 66,240 24

Chromosome 22 known genes 12,348,750 339

Table 4.2: Amount of available test data for the human and Drosophila models. Given is the

total length in bases of all sequences for each of the test sets, along with the number of promoters.

The number for human CMV refers to the total number of genes, but the number of promoters

is presumably lower as a considerable number of transcripts contains more than one gene. (The

Fickett and HCMV sequences are evaluated on both strands, therefore the number is two times

the number of base pairs mentioned in the text.)

annotation (Dunham et al., 1999) contains 545 genes, grouped into 247 known, 150 related, and

148 predicted genes, according to the information the annotation was based on. The exact TSS

is known for only 20 genes, and two promoters were reported to be contained in EPD (Scherf

et al., 2001). We used the revised annotation version 2.3 of May 2001, with 339 known, 112

related, and 109 predicted genes. Similar to the genomic set in Drosophila, we also evaluate only

the known genes, which at least partly rely on cDNA alignments. Nevertheless, this set is of less

quality, as we did not check whether the cDNA aligns to the 5’ end of the gene and includes the

start codon. Tables 4.1 and 4.2 give a concise overview on all data sets.

This chapter concludes the first part of this thesis, which dealt with the background in biol-

ogy and bioinformatics. Next, we turn to the computational part and start with the probabilistic

models used to represent DNA sequence classes.
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Discrete Densities for Biopolymer

Sequences

Sequence data has a number of inherent variations, even if the sequences are supposed to serve

for the same biological purpose. Partly, this is a simple consequence of the way the data is

generated: DNA sequencing is an error-prone process, and even though the sequencing projects

circumvent this problem largely by providing a manifold coverage of the same sequence (Adams

et al., 2000), errors cannot be ruled out completely. More important variations are related to the

biological function. The general transcription machinery might be used throughout all species,

and pol-II is involved in the transcription of all protein encoding genes, but every single gene

needs to be activated in its very own specific manner.

It is therefore not surprising that a probabilistic modeling proved to be advantageous for pat-

tern recognition problems in bioinformatics (Durbin et al., 1998; Baldi and Brunak, 1998). This

chapter introduces suitable discrete models to represent promoter sequences: Markov chain mod-

els and stochastic segment models. Markov chains have been shown to be useful to model DNA

sequences as a whole, without positionally conserved patterns. They are based on the occurrence

of short symbol strings (typically, three to eight), which makes them a good model to capture

transcription factor binding sites scattered throughout a eukaryotic promoter region. Following

the Markov chains, stochastic segment models are described which provide a framework to com-

bine several sub-models in a probabilistic way. This is especially suitable for modeling distinct

parts of the core promoter (see section 3.2.3). The next chapter then discusses how continu-

ous features related to the structure of DNA are computed and modeled by Gaussian densities.

Throughout, I assume that the reader is familiar with the basics of probability calculus, and is

referred to standard textbooks otherwise (Krengel, 2000).
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5.1 Introduction

A probabilistic model Mk provides a representation of a class Ωk, with K classes of interest,

i. e. k = 1 . . .K. Given a feature vector as input, in our case a DNA sequence w with the

nucleotides as features, it can be used to compute the likelihood Pk that the sequence belongs to

class Ωk, with

Pk(w) := P (w|Ωk). (5.1)

For example, in this thesis models for promoters and non-promoters, e. g. coding and non-

coding sequences, are considered.

A model contains a set of parameters Θk which are adjusted during training, using a set W of

n samples. In the case of supervised training, the samples are known to belong to one class each,

so W consists of disjoint subsets for each of the K classes (W = ∪kW
k). Establishing a model

therefore involves a choice of parameters, the structure or topology of the model, followed by

the training of the parameters. Thereby, our goal is to obtain a set of parameters which results in

the best possible recognition rate on the K classes under consideration. The choice of topology

should lead to a model which is a good compromise between generalization and adaptation.

Intuitively, a model with many parameters will give a good performance on the training set

but will generalize poorly because it has over-adapted to the training samples. A small model,

however, will not be able to fully capture the problem and therefore also perform poorly on a test

set of unseen samples.

It is often not possible to train the parameters in such a way that the recognition rate is

optimized directly. Therefore, an objective function R is used instead, and the parameters are set

to values that lead to an optimum of this function applied to the training set. One well-known

objective function is Maximum Likelihood (ML):

RML
Θk

(W k) =
nk∏

i=1

Pk(w
�
� ), (5.2)

where nk is the number of sequences in the training set W k for class k (
∑

k nk = n).

The ML objective function regards each class as independent of the others and aims at the

maximization of the probability that the given training sample was generated, knowing to which

class each sequence belongs. In the case that the models will be used for classification, it can be

advantageous to employ discriminative objective functions where the emphasis is not put on the

exact modeling of a class but on the correct classification of the samples. The Maximum Mutual

Information (MMI) or Conditional Maximum Likelihood (CML) objective function (Bahl et al.,

1986),
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RMMI
Θ (W ) =

n∏

i=1

P (Ωqi
|w � )

=
n∏

i=1

P (w � |Ωqi
)P (Ωqi

)
∑

j P (w � |Ωj)P (Ωj)
, (5.3)

is an example for such a discriminative function and maximizes the a posteriori probability of a

class under the assumption that a pattern belonging to this class was observed. Here, qi gives the

number of the correct class for sequence w � , and P (Ωj) denotes the a priori probability of class

Ωj . The objective function is not maximized for each class independently as with ML; instead,

all samples are regarded together, and the likelihood of the model for the correct class is put in

relation to the total likelihood obtained by all models together. Nadas et al. (1988) proved that

MMI leads to better recognition results than ML in the case of limited sample size and wrong

model assumptions.

Eddy et al. (1995) described a special case of MMI called Maximum Discrimination (MD)

where models are trained according to MMI, but using only the samples from each class:

RMD
Θk

(W k) =
nk∏

i=1

P (Ωk|w
�
� )

=
nk∏

i=1

P (w
�
� |Ωk)P (Ωk)

∑

j P (w
�
� |Ωj)P (Ωj)

, (5.4)

They describe an application on hidden Markov models for the classification of protein se-

quences; an application of MMI on the recognition of genes in DNA sequences was reported by

Krogh (1997). The main reason why such discriminative functions have not replaced the ML esti-

mation in general lies in the greatly increased complexity of the training procedure. Computation

of the MMI objective function requires the application of all models on the complete sample set,

and MD needs the application of all models on the subset of the respective class, whereas ML

only requires to apply one model on its respective sample subset. When discriminative functions

shall be applied to a complex task, a fixed background model is therefore often used instead,

or the number of models to evaluate is limited to those concurrent models which are the most

similar.

For ML, MMI, and MD, it is often possible to derive a closed or iterative solution to the

parameter estimation problem for a given model; the choice of topology is however not straight-

forward, and in many cases solid heuristics are the only way to tackle this problem.
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5.2 Stationary Markov chains

5.2.1 Basics

A particular type of probabilistic model that has turned out to be suited for a variety of ap-

plications in bioinformatics is the Markov chain model (for example, see the applications of

Borodovsky et al. (1994); Audic and Claverie (1997); Ohler et al. (1999b)). This type of model

is also popular in the field of speech recognition where it is usually referred to as language model

and used to judge the reliability of word chains which are the result of acoustic speech recogni-

tion. Many of the literature references below come from this field, and good introductions were

written for instance by Jelinek (1990) and Schukat-Talamazzini (1995).

Markov chains are motivated by the observation that the likelihood of a sequence w =

w1 . . . wT , with wi equal to a word v from a finite vocabulary V , can be decomposed into a

product of conditional likelihoods as follows1:

P (w) = P (w1)
T∏

t=2

P (wt|w1 . . . wt−1
︸ ︷︷ ︸

context

). (5.5)

This equation shows that one symbol in a sequence is depending on all its predecessors,

i. e. on the context of symbols observed so far. In a model with a fixed size, such a context of

arbitrary length can certainly not be handled. A possible approximation of the probability P (w)

is therefore made by limiting the context length to N which is the basic idea of an N th order

Markov chain:

P (w) ≈ P (w1)
T∏

t=2

P (wt|wt−N . . . wt−1) (5.6)

In speech recognition, this N th order Markov chain is called an (N + 1)-gram language

model. The model contains |V |N+1 parameters — one for each possible word after each possible

context of length N . The parameters for each context v̂ = v1 . . . vN have to constitute a discrete

probability distribution, following the constraints

∑

v∈V

P (v|v̂) = 1, ∀v : P (v|v̂) ≥ 0. (5.7)

These parameters stay the same for the whole observation and do not change along the se-

quence; hence the name stationary Markov chain. Figure 5.1 gives an example of a first order

Markov chain model for DNA sequences.
1For brevity and clarity, I will identify the outcome of an experiment with the random variable representing it.
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A

G T

C

Figure 5.1: Example of a first-order Markov chain model for DNA sequences (after Durbin

et al., 1998, p. 48).

For the ML estimation of the conditional probabilities, the relation P (v|v̂) = P (v̂v)/P (v̂)

can be exploited. Given one training sequence w1 . . . wT , ML estimations of the probabilities on

the right hand side are given by

P̃ (v1 . . . vN) =
#(v1 . . . vN)

T −N
, (5.8)

with # denoting the absolute count of its argument in the sequence (Schukat-Talamazzini, 1995).

An approximation of P (v|v̂) is then given by

P̃ (v|v̂) =
P̃ (v̂v)

P̃ (v̂)
≈

#(v̂v)

#(v̂)
, (5.9)

which means that it is carried out by simply counting the substrings of length N and (N + 1)

in the set of training sequences W . If a context appears at the very end of a sequence, it is not

extended by any symbol. This means that the count for the context might be larger than the

sum of all extensions by the letters from V , and it is the reason for equation 5.9 only being an

approximation. To avoid the case that some distributions might not sum up to one, an alternative

estimation therefore replaces the denominator by the sum over all counts with the same context:

P̃ (v|v̂) =
#(v̂v)

∑

v′∈V #(v̂v′)
(5.10)

A pitfall that needs to be avoided is that some of the parameters might be undefined or zero

if a certain context v̂ or its extension by v is never observed in the training set. This has the

consequence that the probability of a sequence in which such a problematic subsequence occurs
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CpG island non-CpG island

context A C G T A C G T

A 0.180 0.274 0.426 0.120 0.300 0.205 0.285 0.210

C 0.171 0.368 0.274 0.188 0.322 0.298 0.078 0.302

G 0.161 0.339 0.375 0.125 0.248 0.246 0.298 0.208

T 0.079 0.355 0.384 0.182 0.177 0.239 0.292 0.292

Table 5.1: First order Markov chains of CpG islands and non-CpG islands, parameters from

Durbin et al. (1998).

is immediately set to zero. It can be avoided by smoothing techniques, the easiest of which is

Jeffrey’s discounting (also known as Laplace’s rule, Schukat-Talamazzini, 1995; Durbin et al.,

1998), where the counts of all parameters are increased by one. More sophisticated approaches

modify the estimates either relative to the sample size or the non-smoothed parameter value.

Finally, a less heuristic way replaces the discounting by a Dirichlet prior distribution (Krogh

et al., 1994a):

P̃ (v|v̂) =
#(v̂v) + α ·mv

∑

v′∈V #(v̂v′) + α ·mv′
, (5.11)

with mv the expected mean frequency of symbol v, and α the strength of the prior. Thus, prior

information is explicitly included and the ML estimate becomes a maximum a posteriori (MAP)

estimate. It is easy to see that Jeffrey’s discounting, for example, is a special case of this approach

with uniform expected frequencies and a prior weight equal to the size of the vocabulary.

Considering the model in figure 5.1, a simple application consists in the detection of CpG

islands (see section 3.2.2). Durbin et al. (1998) give the ML probabilities for two Markov chains

of first order, trained on 48 CpG island and other negative examples (table 5.1). Each row contains

the probabilities conditioned on the same context — the base in the leftmost column — and the

values therefore sum up to one. From the parameters in table 5.1, it becomes apparent that even

at the level of first-order statistics, the parameters are considerably different. Note especially the

remarkable under-representation of P (G|C) in non-CpG islands.

For the first N symbols of a sequence, the context is not yet fully available. Therefore, a

vector of probabilities to start with a certain context has to be provided. Alternatively, Markov

chains of order zero to N − 1 can be estimated on the same training set and then used to provide

the probabilities with shorter context. Markov chains describe a probability distribution over

sequences of the same length, i. e.
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∑

w∈V T

P (w) = 1, T ∈ IN. (5.12)

This also means that they describe a distinct distribution for any given sequence length,

which will be advantageous in our application context. In an application such as a language

model in speech recognition where the model is used to judge the likelihood of word chains

of different length, a single distribution over all sequences of any length, i. e. over V ∗, can

be achieved by adding a distinct end symbol (see, e. g., (Durbin et al., 1998, chapter 3.1) or

(Schukat-Talamazzini, 1995, chapter 7.2)).

As easy as the parameter estimation might be, Markov chains have a big disadvantage: The

number of parameters increases exponentially when the context is extended. Therefore, this

quickly leads to an over-fitting even though some of the parameters with extended context could

possibly still be reliably estimated.

5.2.2 Interpolated Markov chains

One way to deal with parameter over-fitting, caused by increasing context size and parameter

number, is an interpolation between Markov chains of different order. The basic idea of applying

interpolation methods is to fall back on the probability estimation of subsequences shorter than

N +1 if the frequencies of an oligomer v̂v of size (N +1) cannot be reliably estimated. In princi-

ple, interpolation leads us to a re-estimation of the initial parameter values (equation 5.9). Here,

we will consider two different interpolation techniques. The first one is the linear interpolation

(Jelinek, 1990) between all conditional probabilities with increasing context length up to N :

P̂ (v|v̂N
1 ) := ρ0

1

|V |
(5.13)

+ ρ1P̃ (v)

+ρ2P̃ (v|v̂N)
...

+ρN+1P̃ (v|v̂N
1 )

The fraction (1/|V |) accounts for unseen events and ensures that no probability is set to zero.

Therefore, no additional parameter smoothing is needed as it is the case with N th order Markov

chains. v̂
j
i is a shortcut for v̂i . . . v̂j, and denotes the empty string if i > j. The coefficients ρi

are non-negative values which sum up to one to guarantee that the new parameter values P̂ (·|v̂)

again form a probability distribution.
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Setting all the weights ρ0 . . . ρN to zero and ρN+1 to one is equal to an N th order Markov

chain. The models with linear interpolation are thus a straightforward generalization combining

oligomer counts of different length. The advantage of interpolation is that the model can take

into account statistics of a higher order without running into the danger of over-fitting the model

to the training data.

There are some shortcomings of linear interpolation: Equation 5.13 contains only one vector

of interpolation coefficients, whether all the subsequences up to length N really occur in the

training data or not. Additionally, all parameters are treated equally, whereas the interpolation

coefficient assigned to a parameter with a frequently occurring context should be larger than

the coefficient for a rare event. By introducing an additional function g(v̂) which scores the

reliability of the context v̂ monotonically, the linear interpolation can be extended to handle this

problem accurately:

P̂ (v|v̂) :=

∑N+1
i=0 ρi · g(v̂N

N−i+2) · P̃ (v|v̂N
N−i+2)

∑N+1
i=0 ρi · g(v̂N

N−i+2)
, (5.14)

This interpolation scheme is called rational interpolation (Schukat-Talamazzini et al., 1997). It

overcomes the problems of linear interpolation by using the function g(v
�
), which we chose to

be a sigmoid function dependent of the frequency of v
�
:

g(v
�
) =

#(v
�
)

#(v
�
) + C

(5.15)

The shape of the sigmoid function is dependent on the constant bias C. In the case of C = 0,

the function g is always equal to one and equation 5.14 becomes equivalent to linear interpolation.

Also, with an increasing amount of training data, the bias C becomes less and less important; the

rational interpolation thus has the largest impact if the training sample size is small.

Estimation of interpolation coefficients. We still lack the means to specify appropriate co-

efficients ρi for both linear and rational interpolation. To avoid over-fitting, optimal coefficients

according to the ML objective function are calculated on a second disjoint part of the training

sample. This step is called validation and is carried out after the initial estimation of the condi-

tional probabilities (equation 5.9).

There is no closed solution for a maximum of the ML objective function in the case of inter-

polated Markov chains, but for the coefficients used in linear interpolation a local optimum can

be found by application of the iterative Expectation Maximization (EM) algorithm. The Markov

chain model parameters are left constant, and the coefficients are seen as hidden variables. Af-

terwards, a large weight will be assigned to those contexts which are reliable; if only sparse data
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are at hand, the weights belonging to short contexts will be increased. A more detailed treatment

was given for example in (Schukat-Talamazzini, 1995, section 7.3.3) or (Hendrych, 1995).

For rational interpolation, the EM algorithm cannot be applied and the computation of locally

optimal interpolation weights is carried out with a gradient descent algorithm instead. As the

interpolated Markov chains are not in the main focus of this work, the detailed re-estimation

formulas are omitted at this point and can be found in (Schukat-Talamazzini et al., 1997).

A different approach to the interpolation of Markov chains was applied on the parsing of

microbial sequences by Salzberg et al. (1998a); in their case, the coefficients are calculated using

a predefined function based on the χ2 statistical test. Other objective functions such as MMI

can also be used to estimate the coefficients (Warnke et al., 1999); but since the estimation of

the Markov chain parameters themselves is still done according to ML (equation 5.9), different

objective functions are used for different groups of model parameters.

5.2.3 Variable length Markov chains

A different way of facing the problem of exponential parameter growth is offered by the concept

of variable length Markov chains (VLMCs), a generalization of the fixed-order Markov chains

(Ron et al., 1996; Bühlmann and Wyner, 1999). VLMCs allow for parameters with variable

context length to capture all significant symbol sequences in the most accurate way.

VLMCs can be represented as stochastic automata with one state per context, or in the form

of context trees. A context tree is an acyclic graph whose nodes vary in degree between zero

and |V |. The arcs leading from a node are labeled with the words v ∈ V , and each symbol is

allowed to label at most one arc. The nodes are defined by pairs (v̂, P (·|v̂)). v̂ is the string of

labels on the path from the node up to a special empty root node e, and represents a context that

is contained in the model. P (·|v̂) is the probability distribution over the vocabulary, conditioned

on that context.

Represented as a VLMC, a Markov chain of N th order is a full tree of depth N . A small

example of a more general context tree is given in figure 5.2.

Probability of a sequence. To illustrate how a VLMC is used to calculate the probability of

a sequence, we use the tree in figure 5.2 to evaluate the sequence 01011. The probability is

computed by applying the chain rule given in equation 5.5. For each symbol in the sequence,

we determine the maximal context by going left in the sequence and down in the tree at the

same time, according to the symbols we traverse. We stop when a leaf is reached — or when the

first symbol of the sequence is hit — and look up the probability for the current symbol in this

leaf. For each symbol, we have to start at the root again to determine the proper context. In our
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(0.2, 0.8)

(0.3, 0.7) (0.4, 0.6)

(0.7, 0.3)(0.6, 0.4)

e

0 1

01 11

Figure 5.2: Example of a context tree on the alphabet {0, 1}, from Kulicke (2000). The prob-

abilities of the symbols are given in parentheses next to the node where they are stored. An arc

leading left corresponds to a transition with 0, one leading right to a transition with 1.

example, this leads to the following computation:

PT (01011) = P (0|e) · P (1|0) · P (0|01) · P (1|0) · P (1|01)

PT (01011) = 0.2 · 0.7 · 0.6 · 0.7 · 0.4

For the tree in figure 5.2, the context 0101 is equivalent to 01. This hints at an alternative view

on context trees, namely that a given tree of maximum depth N defines a projection function c

on the maximal context v̂t−1
1 at any point t in a sequence with

c :







V ∗ −→ ∪N
m=0V

m

v̂t−1
1 7→ v̂t−1

t−l

, (5.16)

l = min
{

k; P (vt|v̂
t−1
1 ) = P (vt|v̂

t−1
t−k), ∀vt ∈ V, 0 ≤ k ≤ N

}

,

Using c, the probability of a sequence generated by a VLMC can now be written as

P (w) ≈
T∏

t=1

P (wt|c(w
t−1
1 )), (5.17)

in analogy to the N th order Markov chain in equation 5.6. As the distributions are not only

contained in a leaf, but also in all inner nodes, no special care has to be taken for the beginning

of sequences where the maximum context might not yet be available.

A representation equivalent to context trees are probabilistic suffix automata (PSA), a sub-

class of probabilistic finite automata (PFA). Here, the context is represented by a state of the

automaton, with the restriction that no state label is a suffix of any other label, and that out of

each state, a transition exists for all v ∈ V . For every context tree, there is an equivalent represen-

tation as PFA, and a PSA can be constructed if an additional property holds. Appendix B gives
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the detailed algorithm for conversion of a context tree into a PFA; as the probability calculation

using a PFA is up to N times faster2, such a conversion is advisable once a context tree has been

established.

Estimation of VLMCs. In contrast to fixed-order Markov chains, VLMCs enable us to include

important patterns with long contexts without an exponential growth of the number of parame-

ters. The problem then remains how to decide in an automated manner which contexts should be

included in the model, which means nothing less than a training of the model structure. To find

the best among all possible model structures would leave us again with an exponential search

problem, which is clearly not feasible. Ron et al. (1996) showed that the algorithm in figure 5.3

(Ron-Singer-Tishby (RST) algorithm) is able to learn a context tree according to the PAC (prob-

ably approximately correct) learning paradigm (Mitchell, 1997): With a likelihood of 1− δ, the

distribution of the learned VLMC ML will have a Kullback-Leibler (KL) divergence DKL from

the correct underlying VLMC MC of at most ε (0 ≤ ε, δ ≤ 1):

1

T
DKL[ML][MC ] ≤ ε, T > 0 (5.18)

Thereby, the inequality holds for all possible sequence lengths T and is normalized by the

length, as the likelihood generally decreases with increasing sequence length. The KL divergence

between two (discrete) distributions P and Q on a set of observations X is defined by

DKL[P ][Q]:=
∑

x∈X

P (x) log
P (x)

Q(x)
; (5.19)

here, the set of observations is V T .

The algorithm successively grows a tree up to the maximum depth N . Nodes depicting a

context v̂ are added if they fulfill the following conditions:

1. The probability estimate P̃ (v̂) is above a minimum probability.

2. For at least one symbol v, the probability conditioned on v̂ is significantly different from

the father node with context suffix(v̂), or v̂ is a node on the path from e to another node

which is significantly different.

The first condition keeps the tree from an exponential growth, as only nodes with a certain

minimal probability are considered. The last condition assures that all nodes which are signifi-

cantly different are indeed added to the tree, even if some ancestral nodes have almost the same
2The tree has to be traversed from root to leaf for every single symbol, which can take up to N accessions

depending on the context.
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Initialization: M̄ = {e}, S̄ = {v ∈ V | P̃ (v) ≥ Pmin}

Building the context tree: WHILE S̄ 6= ∅

Choose and delete an arbitrary context v̂ from S̄

IF ∃ v ∈ V : P̃ (v|v̂) ≥ (1 + α)γmin and P̃ (v|v̂)

P̃ (v|suffix(v̂))
≥ r or ≤ 1/r

THEN Add v̂ to M̄ , together with all v̂
�

that lie on the path from e to v̂

IF |v̂| < N

THEN ∀ v′ ∈ V

IF P̃ (v′v̂) ≥ Pmin

THEN S̄ = S̄∪{v′v̂}

Smoothing: ∀ v̂ ∈ M̄

P̂ (v|v̂) = (1− |V |γmin)P̃ (v|v̂) + γmin

Figure 5.3: The RST algorithm for the training of a context tree M̄ , after Kulicke (2000). For

any context v̂ = v̂1 . . . v̂l, suffix(v̂) = v̂2 . . . v̂l. Details see text.

probability distribution. As difference measure, the ratio between one child and its corresponding

parent node parameter value is used. The algorithm has the following five parameters:

N : maximal depth of the tree,

Pmin : minimal probability of a context to be considered,

r : measure for the difference of parent and child node probabilities,

γmin : smoothing factor,

α : minimal difference of any P (v|v̂) from the smoothing factor.

Ron et al. (1996) prove that the algorithm indeed fulfills the PAC criterion described above

and runs in time polynomial in N , |V |, 1/ε, 1/δ, and the amount of observations in the training

data Tall. In practice, though, the exact amount of training data needed is not known, and even

if so, one could most probably not provide it, at least in the case of DNA sequence analysis.

Nevertheless, Bejerano and Yona (2001) show that a reasonable choice of parameters can lead

to good results in protein sequence classification. They also extend the algorithm to consider

application specific background knowledge on proteins. In their application, α is set to zero; in

addition to this simplification, we pursue Jeffrey’s discounting as a smoothing approach, which

leaves an effective number of three adjustable parameters: depth, cutoff, and minimal probability.

An alternative approach for the training of VLMCs was introduced by Bühlmann and Wyner
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Initialization: T̄ = {e}, S̄ = {v ∈ V | P̃ (v) ≥ Pmin}

Building the context tree: WHILE S̄ 6= ∅

Choose and delete an arbitrary context v̂ from S̄

IF ∆(v̂) ≥ K

THEN Add v̂ to T̄ , together with all v̂
�

that lie on the path from e to v̂

IF |v̂| < N

THEN ∀ v′ ∈ V

IF P̃ (v′v̂) ≥ Pmin

THEN S̄ = S̄∪{v′v̂}

Smoothing: ∀ v̂ ∈ T̄

P̂ (v|v̂) = 1+#(v̂v)

|V |+
∑

v′∈V
#(v̂v′)

Figure 5.4: The BW algorithm for the training of a context tree, after Kulicke (2000); compare

with figure 5.3. Details see text.

(1999). They propose a training algorithm where the decision whether to extend the tree or not

is not based on the difference of a single parameter, but on the whole distribution. The measure

∆ employs the Kullback-Leibler divergence (equation 5.19), weighted by the absolute count of

the context (see figure 5.4, the Bühlmann-Wyner (BW) algorithm):

∆(v̂) = DKL[P (·|v̂)][P (·|suffix(v̂))] ·#(v̂) (5.20)

Bühlmann and Wyner (1999) show that the algorithm is consistent if the cutoff value K on

the distance ∆ follows

K ∼ C · ln(Tall), with C > 2 · |V |+ 4 (5.21)

which means that the cutoff should be chosen proportional to the amount of training data at hand

and the size of the vocabulary. Again, there is no closed solution for the optimal value for K; as

a rule of thumb for the magnitude of K, Bühlmann (2000) uses the χ2/2 quantiles χ2
|V |−1;0.9/2

and χ2
|V |−1;0.8/2. The parameter Pmin is only crucial for preventing the algorithm to examine too

many nodes; as the count of the context appears in the distance measure, the minimal probability

does not have a large influence on the final topology of the tree. This is not the case for the

distance measure r used in the RST algorithm.
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Cross-validation estimation of optimal cut-off. Both the BW and the RST algorithm do not

provide an estimate of the cutoff r respectively K that delivers the “best” VLMC fitted to the

training observations. But as Bühlmann (2000) points out, the model that comes closest to the

true distribution might not even be the one that is desired. Often, the aim is to find a model that

optimizes a global risk or an objective function, such as ML and MMI described above in section

5.1. A feasible way to find such a (sub)optimal tree is to restrict the search to the trees generated

by a number of different cut-offs K, and choose the one for which the optimal value is achieved.

Note that this algorithm is not guaranteed to deliver the best tree as there might be better trees

that are not generated by one overall cut-off for all leaves of the tree.

Therefore, we are left with the problem of estimating the objective function for different

K (or r and Pmin) values. Bühlmann (2000) addresses the problem by means of a Metropolis

sampling scheme: He estimates an initial tree, uses it to generate a large number of independent

samples, trains trees on each of those samples and computes the average risk over the trees within

a certain range of K. In this work, a computationally less demanding cross-validation scheme is

used instead. The training data is randomly divided into m equal parts, and m − 1 of them are

used to estimate the tree. The objective function is then evaluated on the remaining disjoint part

for different values of K. This is repeated m times, and the ML or MMI estimate is given by the

mean value over the m experiments. The final tree is then constructed using the complete set of

training samples and the cut-off for which the optimal value was found. Figure 5.5 summarizes

this. As mentioned above, the χ2 quantiles are suitable as estimates for Kmin and Kmax. To

apply the algorithm on a discriminative measure, background models such as Markov chains of

fixed order can be used. Alternatively, optimal cutoff values for all models together could be

determined, at the possible cost of a multidimensional exhaustive search. This is certainly only

practical for small numbers of data and classes. Note that the algorithm uses K as an example

parameter, but can be also employed for other parameters such as the upper context length or the

ratio r.

5.2.4 Discriminative estimation of Markov chain parameters

By now, we have discussed two approaches to improve the modeling of sequences with Markov

chains: Interpolation of Markov chains of different order, and the explicit representation of vari-

able context. Both address the problems caused by the exponential parameter growth with in-

creasing context length, and in the case of VLMCs explicitly deal with the topology of a model.

The following section concerns the estimation of parameters themselves. As mentioned in the

beginning of this chapter, parameters can be estimated according to different objective functions.

The ML estimate of Markov chain parameters was already given above in equation 5.9, and we
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divide the training sample into equally sized disjoint parts

W [0], W [1] . . .W [m− 1]

FOR K = Kmin TO Kmax

set b = 0

FOR i = 0 TO m− 1

X = W [i mod m]

W = W [(i+1) mod m] + . . . +W [(i+m− 1) mod m]

Build the context tree using K and the samples in W

b = b + R(X)

estimate of objective function: R[K] = b/m

Kopt = argmaxK R[K]

Figure 5.5: Algorithm for the estimation of objective functions R by means of cross-

validation.

will now derive the parameter estimation for MMI and MD as well (Ohler et al., 1999a).

Assuming that we have one training sequence w � , the partial derivation of the logarithm of the

MMI objective function (equation 5.3) with respect to a parameter Pk(v|v̂) of (variable length)

Markov chain Mk for class Ωk leads us to

∂ log RMMI
Θ (w � )

∂Pk(v|v̂)
=

∂

∂Pk(v|v̂)
(log P (w � |Ωqi

)P (Ωqi
)− log

∑

j

P (w � |Ωj)P (Ωj))

=
#(v̂v)

Pk(v|v̂)
δk,qi

−
#(v̂v)

Pk(v|v̂)
·

P (w � |Ωk)P (Ωk)
∑

j P (w � |Ωj)P (Ωj)

=:
1

Pk(v|v̂)
(#k,qi

(v̂v)−#′(v̂v)) (5.22)

where δk,qi
is equal to one if qi = k and zero otherwise. #′ is a weighted counting function, and

#k,qi
is a function which counts only if qi = k. Setting the right hand side to zero and solving for

Pk(v|v̂) does not lead to a closed solution as in the case of the ML estimation. Instead, we are

left with the task to iteratively optimize the objective function using the gradient given above.

We do not use a standard gradient descent technique but rather follow the approach described

by Normandin and Morgera (1991) who use MMI to train hidden Markov models for spoken

digit recognition. They carry out the parameter optimization with a re-estimation formula for

rational objective functions such as MMI:
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P̃k(v|v̂) =
Pk(v|v̂)

(
∂ log RMMI

Θ
(W )

∂Pk(v|v̂)
+ D

)

∑

vj∈V
Pk(vj|v̂)

(
∂ log RMMI

Θ
(W )

∂Pk(vj |v̂)
+ D

) (5.23)

For a sufficiently large constant D, the convergence to a local optimum was proven by

Gopalakrishnan et al. (1989). Because the theoretical bound on D leads to a slow convergence in

practice, we choose D to be equal to

D = max
vj∈V

{

−
∂ log RMMI

Θ (W )

∂Pk(vj|v̂)
, 0

}

+ ε (5.24)

which then guarantees that the new parameters fulfill the conditions of a probability distribution. ε

is a small positive constant. The division by parameter Pk(v|v̂) in the MMI derivation (equation

5.22) are an inherent cause for numerical instability for low-valued parameters. Incidentally,

these are also parameters which are likely to be unreliably estimated. Thus, Merialdo (1988)

replaced the original value of the partial derivation by

∂ log RMMI
Θ (W )

∂Pk(v|v̂)
≈

#k,qi
(v̂v)

∑

vj∈V
#k,qi

(v̂vj)
−

#′(v̂v)
∑

vj∈V
#′(v̂vj)

(5.25)

to remove emphasis from low-valued parameters, concentrate on the important high-valued pa-

rameters and thus achieve a more stable convergence.

Maximum Discrimination estimation. Eddy et al. (1995) derive estimates for HMM param-

eters according to the MD objective. When we calculate the derivation of the MD objective

function (equation 5.4) for a Markov chain Mk, we get a special case of the MMI derivative:

∂ log RMD
Θk

(w � )

∂Pk(v|v̂)
=

#(v̂v)

Pk(v|v̂)

(

1−RMMI
Θ (w � )

)

, (5.26)

because δk,q (equation 5.22) is always equal to one, and the negative weight term is equal to the

MMI objective function. We follow the approach of Eddy et al. (1995) and introduce the condi-

tion that all parameters belonging to the same distribution (i. e., to the same context) must sum

up to one with the help of Lagrange multipliers. This leads us to an Expectation-Maximization

style re-estimation formula for the parameters:

P̃k(v|v̂) =
#(v̂v)(1−RMMI

Θ (w � ))
∑

vj∈V
#(v̂vj)(1− RMMI

Θ (w � ))
(5.27)
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The values on the right side are calculated using the parameters of the last iteration. If we have

n training sequences, the numerator and denominator sum up over all of them. Once initialized

with values greater than zero, the parameters will always be greater than or equal to zero, thus

fulfilling all characteristics of a probability distribution. To ensure that no models parameters

are set to zero during the iterations, the counts on the right hand side are modified ad hoc by

Dirichlet priors (see equation 5.11 above), for example using the estimated a priori probabilities

of P (v), v ∈ V .

A closer look at equation (5.27) shows that MD can be regarded as nothing else than a

weighted version of ML estimation where the training sequences have weights dependent on

how bad they are recognized by the correct model.

Corrective training, validation, and model interpolation. MMI and MD lead to iterative

formulas for parameter estimation, which leaves us with the problem of appropriate start val-

ues. Throughout this thesis, we use the standard ML estimates for the initialization. The iterative

estimation worsens the already mentioned higher complexity of the discriminative approaches.

Normandin and Morgera (1991) therefore propose corrective training, i. e. a training where only

the misclassified sequences of the last iteration are part of the actual training set. This is justified

by the observation that well recognized sequences do not contribute much to the derivation (equa-

tion 5.22) and can thus be left away without much harm. Corrective training improves drastically

on the speed of an iteration, as only a fraction of the sequences has to be taken into account.

To avoid oscillatory effects during the course of training, it is necessary for both MMI and

MD to perform an interpolation between the model before and after an estimation iteration. One

possible way to do so is to assign a class-dependent weight to the updated parameters which de-

pends on the classification performance of the old model (Normandin and Morgera, 1991). Ad-

ditionally, this weight might decline logarithmically with the number of iterations (Ohler et al.,

1999a). Another possibility is to use large uniform weights (such as 0.98 or 0.99) for the old

model (Eddy et al., 1995). For MMI, the oscillatory effects are certainly partly due to the devi-

ation from the cases with proven convergence (value of D in equation 5.23, approximation of

the derivation in equation 5.25). For MD, the convergence of the re-estimation formula has not

been explicitly shown so far. In any case, the corrective training might add to oscillatory effects,

as the training set and therefore the counts which are considered might drastically change from

iteration to iteration.

Finally, instead of iterating the training process until convergence is reached, we use a dis-

joint validation set to determine a suitable point to stop. As soon as the goal function does not

improve on the validation set any longer, we finish the estimation to prevent the models from

over-adaptation.
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5.3 Stochastic segment models

The structure of eukaryotic promoters as described in section 3.2.1 is too complex to be ade-

quately reflected in a single Markov chain model. The nucleotide statistics within the upstream

region is obviously very different from the TATA box or the initiator site. The formalism of

stochastic segment models, sometimes also called generalized hidden Markov models, which is

described in this section, provides us with the necessary means to model promoters as a sequence

of segments generated by different probability distributions.

5.3.1 From hidden Markov to segment models

A (discrete) hidden Markov model (HMM) generates a symbol sequence by a double process,

instead of the single stochastic process like the Markov chains described above. It consists of a

finite set of states Q =
{

q1, . . . qL
}

, each of which contains a probability distribution over the set

of symbols V .

The first process generates a sequence of states q1 . . . qT , following the Markov property that

the next state is only depending on the current state:

P (qt|q1 . . . qt−1) = P (qt|qt−1)

These probabilities P (qt|qt−1) are called transition probabilities, and constitute a stationary

Markov chain of first order on the sequence of states. By convention, they are given in the L×L

matrix A, with aij := P (qj|qi). Because we lack the necessary context at the beginning of a

sequence, a vector of start probabilities is also needed. This vector is usually denoted by π, with

πi := P (q1 = qi). The sequence of states is not visible to the observer, and we therefore speak

of a hidden Markov model.

The second process generates the symbols wt from the vocabulary that are visible to the out-

side. Each state contains a distinct probability distribution on the vocabulary, and the probability

is only conditioned on the current state:

P (wt|w1 . . . wt−1; q1 . . . qt) = P (wt|qt)

These probabilities are provided by the distribution bqt
(wt) and are arranged in the L × |V |

matrix B, with bij = P (vj|qi). Therefore, an HMM M is fully specified by

M = (π, A, B)

If we assume a specific path s = s1 . . . sT , si ∈ {1, . . . , |Q|}, through the model states qsi ,

the probability that it produces a sequence w = w1 . . . wT on this path is
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P (w, s) = πs1

T−1∏

t=1

bst
(wt)astst+1

· bsT
(wT ), (5.28)

and the total probability for a sequence under the model is obtained by marginalization, i. e. sum-

mation over all paths:

P (w) =
∑

s=s1...sT

P (w, s) (5.29)

Like a Markov chain, an HMM represents a probability distribution over all sequences of the

same length. Over the last 20 or so years, HMMs have become the state-of-the-art models for

acoustic speech recognition (Rabiner, 1989; Niemann, 1990). Starting in 1992, their application

for biosequence analysis, namely of protein sequence families, was pioneered by a number of

independent research groups (Krogh et al., 1994a; Baldi et al., 1994; Eddy, 1995). Shortly after,

they were also employed to model eukaryotic promoters (Ohler, 1995; Pedersen et al., 1996),

although no complete system for prediction in genomic sequences was built. Figure 5.6 shows

a popular HMM topology for protein families, using match, insert, and delete states: The most

common amino acids are modeled with match states; insert states allow for the addition of amino

acids between match states; and delete states are silent states (i. .e., without an output distribution)

that serve to leave out single amino acids or whole protein domains. Libraries such as Pfam

(Bateman et al., 2000) contain a large collection of HMMs for protein families; if a new protein

sequence with unknown function is determined, its probability to belong to one of the families

can be computed with the models from these libraries. As another example, the two Markov

chain models for CpG islands and non-CpG islands given in table 5.1 can be combined into one

HMM which can be used to parse a DNA sequence into the classes CpG or non-CpG island (see

the Viterbi algorithm below). Such a model consists of two sub-models as in figure 5.1, with

additional transitions from all states within one sub model to all within the other one. Depending

on which state is traversed when parsing a DNA sequence, each nucleotide can be labeled as

belonging or not belonging to a CpG island.

HMMs are an adequate representation for positionally conserved patterns. They can be re-

garded as a straightforward extension of weight matrix models for patterns: Every position has a

discrete distribution on its own, but HMMs allow for arbitrary state transitions, whereas weight

matrices correspond to a strictly linear model topology. Markov chains, in comparison, are suited

to model whole regions and do not capture the position of a pattern. On the other hand, they do

not assume independence among the observed symbols in the pattern like HMMs do. Interest-

ingly, each model can be transformed into the other one, though at the price of a much larger

model: A Markov chain can be represented as a special HMM where each context in the MC is
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begin endm

i

d

Figure 5.6: Structure of HMMs for protein families. Match states are at the bottom, diamonds

are used to indicate insert states, and circles for delete states; after Krogh et al. (1994a).

identified with a state in the HMM, the distribution on the context is replaced by the correspond-

ing transition probabilities, and the output distribution is zero for all entries but the last letter of

the context, which is set to one. In the other direction, an HMM can be modeled by an MC which

encodes paths through the model as contexts.

An HMM state emits only a single symbol every time it is visited. Of course, more than one

symbol can be emitted from the same state if it has a transition probability to itself which is larger

than zero. This has the direct consequence that the probability di(τ) to stay in state qi for τ time

points underlies the geometrical distribution

di(τ) = aτ−1
ii · (1− aii) (5.30)

If this is known to be not the case, an explicit duration distribution di(τ) can be included in

every state of an HMM. This model topology is known as hidden semi-Markov model (Rabiner

and Juang, 1993). To be practically useful, the (discrete) distribution di has a lower and upper

limit on the non-negative probabilities. The probability to generate a partial sequence w � =

w1 . . . wτ of length τ by state qj is then given by

Pj(w � , τ) = dj(τ)
τ∏

t=1

bj(wt) (5.31)

With this extension, the limitation of geometrically distributed durations is abolished, but at

a computationally higher price: The computation of the total likelihood in equation 5.29 also has

to take all possible combinations of durations into account. In the following, we omit the length
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τ on the left-hand side, as it is implicitly captured by the length of the sequence wi.

The consecutive symbols that are produced by the same state of a hidden semi-Markov model

are still independent from each other. If known dependencies among symbols shall be taken into

account, the modeling approach can be extended further: The discrete output distribution bi(v) of

state qi which is defined over the vocabulary V is replaced by an arbitrarily complex distribution

bi(w|τ) that generates a number of consecutive symbols, a whole segment, and is conditioned on

the length of the segment. The probability Pj(w � ) that a state produces a partial sequence w � of

length τi is given by

Pj(w � ) = dj(τi) · bj(w � |τi). (5.32)

With a given valid segmentation (s, τ ) = ((qs1, τ1) . . . (qsm , τm)) of sequence w into seg-

ments w � ,
∑

i τi = |w|, the probability of the sequence can be expressed as

P (w, s, τ ) = πs1

m−1∏

i=1

Psi
(w � )asisi+1

· Psm
(w � ), (5.33)

in analogy to the HMM equation 5.28. A walk through such a stochastic segment model (SSM)

therefore looks as follows:

1. Choose an initial state q1, according to the start probability vector π.

2. Decide on the length τi of the current segment w � , according to the duration distribution dj

of state qj .

3. Generate the sequence segment w � using the output distribution bj .

4. Choose the next state according to matrix A.

5. Repeat steps 2–4 until the sequence length T is reached.

Because of the arbitrary duration distributions, an SSM does not constitute a probability

distribution on the sequences of the same length any more, as HMMs and MCs do. Burge (1997)

notes that an SSM defines a probability measure on the joint probability of sequence and parse,

as given in equation 5.33.

The output distribution bj can itself be arbitrarily complex and take into account dependencies

between symbols within a segment. Depending on the field of application, different distributions

such as Markov chains or HMMs may be suitable. Because the output distribution is conditioned

on the duration, we either have to provide an individual distribution for each possible segment

length, a mapping function from various segment lengths to a limited number, or the distributions

have to be able to generate sequences of all valid lengths. This is one of the advantages of Markov

chain and hidden Markov models (without explicit end state, see section 5.2): they constitute a
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probability distribution on all sequences of the same length; therefore, only one model has to

be provided no matter which value τ might be set to. Also, the complex sub-models lead to a

further increased computational complexity: Apart from the summation over all possible segment

lengths, the computation of the probability of a segment by bj has to be carried out for each of

these segment lengths.

HMM model extensions such as SSMs were pioneered in the field of speech recognition,

where the sub-models are usually employed to take correlations among neighboring feature vec-

tors into account. Depending on the sub-models and the way how feature sequences of varying

length are mapped onto them, a large number of slightly different approaches were published;

Stemmer (1999) and Ostendorf et al. (1996) provide concise overviews. Here, we use the term

stochastic segment models (SSMs) pioneered by Ostendorf et al. (1996).

SSMs are not new to the field of DNA sequence analysis – gene finding systems which make

use of stochastic models mostly fit into the framework of SSMs. Especially the GenScan system

(Burge and Karlin, 1997) uses a model structure as described above3 (see the GenScan model

in figure 2.4 as an example for an SSM). Promoter modeling with SSMs was first described in

Stemmer (1999); Ohler et al. (2000).

5.3.2 Algorithms for training and evaluation

After the outline of HMMs and their extension to SSMs, I now describe algorithms to train these

models and use them to calculate the likelihoods of sequences. All algorithms are specified for

SSMs; the corresponding algorithms of HMMs are simpler versions without duration distribu-

tions and can be taken from the literature (Niemann, 1990; Rabiner and Juang, 1993).

If we have an advance annotation of the training material, a supervised and individual learn-

ing of each output, duration and transition distribution is possible. This is the case e. g. for gene

finding systems, where the data base entries contain exon and intron locations. We therefore as-

sume at first that the model is already given, and describe the algorithms to compute the total

likelihood as well as the most likely state sequence.

The forward algorithm. The probability of generating sequence w with a segment model is

equal to the sum of all possible segmentations over which the sequence can be produced. Thus,

using equation 5.33 from above, we have
3Burge uses the term hidden semi-Markov model; according to the terminology used in this work, it corresponds

to an SSM.
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F := 0

FOR t := 1 TO T

FOR j := 1 TO L

FOR t′ = 0 TO t− 1

IF t′ = 0

THEN sum := πj

ELSE sum := 0

FOR i := 1 TO n

sum := sum + Ft′,i · aij

Ft,j := Ft,j + sum · Pj(wt′+1, .., wt)

P (w) :=
∑n

j=1 FT,j

Figure 5.7: Forward algorithm for segment models, from Ohler et al. (2000). The input is

w = w1, .., wT . The matrix F contains the forward variables, L is the number of states. t is the

current time, j the current state, and t′ is the time where the state transition from state qi to qj

takes place.

P (w) =
∑

s

∑

τ
P (w, s, τ ) (5.34)

Instead of literally summing over all individual summands that are computed independently

from each other, the corresponding probability can be computed efficiently by the forward al-

gorithm, given in figure 5.7. This algorithm calculates the forward variables αt,j which contain

the probability that the model is in state qj at time t and has so far produced the symbol chain

w1 . . . wj. The summation over all states at the end of the observation then gives us the total

likelihood over all possible segmentations.

The matrix containing the forward variables is initialized with the vector of start probabilities

times the probabilities to generate the first symbol. The algorithm then fills this matrix from the

beginning to the end of the sequence, regarding each of the states at each position. In contrast to

HMMs where a state transition happens after each symbol, the state duration in SSMs is variable,

so we have to sum up over all preceding time points where a state transition was possible. Figure

5.8 exemplifies this.

The complexity of the forward algorithm for segment models involves T ·(T−1)
2

· L calls to

the segment probability Pj, which is the part consuming most of the runtime. In comparison,

an HMM only needs T · L calls, as it does not require to take all possible segment lengths into
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t’ t

i

j

sequence

position

model states

Figure 5.8: Schematic view on the forward algorithm, from Stemmer (1999). The figure exem-

plifies how the matrix containing the forward variables is computed. At the current time t, state

qj is considered. To obtain the forward variable, an iteration over all possible state durations of

state qj is carried out, summing up over all possible previous states qi.

account4. The evaluation of the forward algorithm thus involves many computations of the output

distributions bj , and has the consequence that we can only make use of distributions which can

be computed efficiently. The next section describes this further.

The Viterbi algorithm. The forward algorithm computes the likelihood over all possible seg-

mentations, but the underlying application often calls for the best segmentation,

ŝ, τ̂ = argmax
s,τ

P (s, τ |w), (5.35)

as a result, plus the likelihood obtained on it. For example, the user of GenScan is not interested

in the total likelihood of a complete genomic sequence under the model; instead, he wants to

know where the exons and introns are most possibly located.

For this goal, we can replace equation 5.35 using Bayes’ theorem:

ŝ, τ̂ = argmax
s,τ

P (s, τ |w) = argmax
s,τ

P (s, τ , w)

P (w)
= argmax

s,τ
P (s, τ , w) (5.36)

4Very often, the complexity of the HMM forward algorithm is given as T · L2 operations which refers to the

matrix accesses instead of calls to the probability function.
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This most likely segmentation can be computed using the Viterbi algorithm, in which the

sum over all possible segmentations that is computed by the forward algorithm is replaced by

its maximum. It is given in figure 5.9 and is a realization of the efficient dynamic programming

(DP) algorithm. DP can be applied to find the best path in a graph if the principle of optimality

holds. It states that each sub-path on the optimal path through the graph will also be optimal

if a monotonous and separable cost function is applied. In our case, the graph is given by the

matrix of states and symbols. The principle holds for segment models because the probability

calculation fulfills the following condition (Stemmer, 1999):

max
s = s1, .., sn

τ = τ1, .., τn

P (w|s, τ ) = max
s′ = s1, .., sn−1

τ ′ = τ1, .., τn−1

P (w′|s′; τ ′)·max
sn

τn

{asn−1sn
·Psn

(w′′)} (5.37)

In this equation, w is the complete sequence. w′ is the sequence generated by the model

while traversing the segments s′, τ ′. w′′ then represents the rest of the sequence w which is not

part of w′. w′′ is generated by model state sn.

The likelihoods of the optimal sub-paths are stored in the matrix ∆, just as the total likeli-

hoods were stored in the forward matrix F (see figure 5.7). Additionally, we need to keep track

of the best previous state and its duration for every state and position. These matrices Φ
state

and Φ
dur are used to backtrack the optimal segmentation once the matrix ∆ has been filled and

we therefore know in which state the overall best path ends. Apart from this backtracking, the

complexity is essentially identical to that of the forward algorithm.

Viterbi training. What remains to be specified, are algorithms to train the segment models,

i. e. the start and transition probabilities as well as the duration and output distributions. For all

practically useful goal functions such as the ones discussed in section 5.1, no closed solution for

the model parameters can be given, not even in the case of ML which still has a closed solution in

the case of Markov chains (cf. section 5.2.1). The obvious reason for this is the second stochastic

process which generates the hidden segmentation.

An efficient algorithm to train an SSM uses the Viterbi algorithm inside an iterative two-step

learning process: First, we determine the most likely state/duration sequence for each training

sequence, then we treat this segmentation as the correct annotation. The resulting training ma-

terial for each state is used to estimate the output and duration distribution; the probabilities of

the state transitions and initial states are modified as well. This is known as Viterbi or decision

supervised training. The algorithm aims at the maximization of the Viterbi score of the model,

i. e., the score P (w, ŝ, τ̂ ) obtained on the most probable segmentation ŝ, τ̂ of sequence w. This
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Initialize Φ
state,Φdur,∆

FOR t := 1 TO T

FOR j := 1 TO L

Initialize m

FOR t′ = 0 TO t

IF t′ = 0

THEN m′ := πj

m′
index := −1

ELSE FOR i := 1 TO N

h := ∆t′,i ·Aij

IF h > m′

THEN m′ := h

m′
index := i

a := m′ · Pj(wt′+1, .., wt)

IF a > m

THEN m := a

mindex := m′
index

mdur := t− t′

∆t,j := m

Φstate
t,j := mindex

Φdur
t,j := mdur

sn := argmaxj∈N{∆T,j}

τn := Φdur
T,n

Figure 5.9: Viterbi algorithm for segment models, after Stemmer (1999). Given is a sequence

w = w1, .., wT . Φstate is a matrix that contains pointers back to the previous states; Φdur contains

the corresponding segment durations. These are needed to recover the optimal segmentation. ∆

stores the probability of the respective optimal state sub-sequences and is the counterpart of the

forward matrix F . The probability of the best parse is contained in ∆T,sn
. s, τ result from the

back pointers stored in the matrices Φ.

is a goal function which is different from Maximum Likelihood and also the other ones discussed

in section 5.1.

For HMM model estimation, Schukat-Talamazzini (1995) notes that the following inequality

holds: If M denotes the model before and M ′ the model after the current training iteration, and
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q a path through the model,

P ∗
M(w) = PM(w, q̂) ≤ PM ′(w, q̂) ≤ P ∗

M ′(w) (5.38)

with P ∗
M(w) = PM(w, argmax

q
PM(q|w)).

The goal function evaluated on M ′ is therefore guaranteed to be at least as large as the one

on M ; re-estimation of the parameters according to the Viterbi training algorithm is based on

the optimal path which in principle could also be used by the updated model. But because the

best path obtained by the old model might not be the best under the new one, the last part of the

equation is an inequality. In the case of SSMs, though, a proof of convergence is deferred to the

sub-models: as they might be trained with any goal function, the overall convergence according

to the Viterbi goal function cannot be guaranteed in general. When Markov chain models of fixed

order are used as sub-models, the ML estimation corresponds to the Viterbi goal function, and

the inequality holds. But already in the case of Maximum Likelihood estimation of interpolated

Markov chains, this does not hold any more, as they perform a local optimization after the initial

parameter estimation. In practical experiments, though, convergence is usually observed.

Viterbi training has the complexity of the Viterbi algorithm, plus the complexity of the train-

ing algorithms for the sub-models, and usually results in a fast convergence. Other popular train-

ing algorithms for HMMs could also be generalized to the extended model structure of the SSMs.

For example, there are expectation-maximization (EM) or gradient descent algorithms to (lo-

cally) optimize the ML goal function (Niemann, 1990; Baldi and Brunak, 1998). The EM based

approach is known as Baum-Welch algorithm and is based on the forward algorithm and a cor-

responding backward algorithm that fills a matrix of backward variables starting at the end of

a sequence. This algorithm takes all possible paths through the model instead of only the best

one into account which results in a much higher complexity: first, all posterior probabilities

for transitions and durations are calculated from the forward and backward matrices, and then

the sub-models have to be trained; for each state, either one sub-model with partial sequences

weighted with their duration probability, or several sub-model for all durations that had a prob-

ability greater than zero. In either way, this obviously results in a much larger runtime, which is

not even justified when one is only interested in the application of the Viterbi algorithm to obtain

the best segmentations. This is the case for gene finding, where, apart from alternative splicing,

only one gene structure needs to be recovered, and also for promoter analysis, where e. g. only

at most one TATA box is present at a specific location within the sequence.

Numerical considerations and scaling. Computing with probabilities often leads to numerical

problems which have to be accounted for. Simply multiplying all probabilities for the individual
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Initialize model M

WHILE not converged or FOR a predefined number of cycles

ŝ, τ̂ := argmaxs,τ PM(s, τ |w) (Viterbi algorithm)

∀i : π̄i := #(ŝ1 = i)

∀i, j : āij := #(ŝt = i ∧ ŝt+1 = j)

∀i : π̂i := π̄i∑

i
π̄i

∀i, j : âij := āij∑

j
āij

∀i : Estimation of Pi including di and bi

M := (π̂; Â; P̂ )

Figure 5.10: Viterbi training for segment models, from Ohler et al. (2000). # is a function

which counts the occurrence of its argument.

components, e. g. as given in the chain rule (equation 5.5), will lead to an underflow even if

sequences of only moderate length are considered.

A natural way to avoid underflows is to compute the sum of the logarithms of the probabilities

instead of the product of the probabilities themselves. As the logarithm is a strictly monotonous

function, the maximum of the sum of logarithms is at the same point as the maximum of the

product of probabilities. For the Viterbi algorithm, where only the respective maximum is con-

sidered, this is an easy solution. It also leads to a faster run-time because the time consuming

products are replaced by sums.

In the case of the forward algorithm, the situation is more complex, as it involves the com-

putation of sums of probabilities. Converting back and forth between logarithmized and normal

probabilities is definitely no solution, but the equation of Kingsbury and Rayner (1971) provides

a way out. It states that the logarithmized sum of two probabilities can be computed as follows:

logu(p1 + p2) = logu p1 + logu(1 + ulogu p2−logup1) (5.39)

Incidentally, we also need this equation to compute the sum over the likelihoods in the de-

nominator of the MMI goal function (equation 5.3).

An alternative solution is provided by scaling of the forward variables. In the case of HMMs,

we simply re-scale the entries with a column-dependent factor; very often, as a factor the sum of

all column entries is used:

α′
t,j =

1

δt
· αt,j =

αt,j
∑

j αt,j
(5.40)

In the course of the forward algorithm, we are now able to use the re-scaled variables because
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the following condition holds:

αt,j =
∑

i

α′
t−1,i · δt−1 · aij · bj(wt) = δt−1 ·

∑

i

α′
t−1,i · aij · bj(wt) (5.41)

The real forward variables can now be reconstructed at any time point via:

αt,i = δ1 · · · δt · α
′
t,i. (5.42)

If we want to use the re-scaled variables for segment models, we run into problems because

the SSM equation corresponding to equation 5.41 looks as follows (Stemmer, 1999):

αt,j =
t−1∑

t′=0

Pj(wt′+1 . . . wt) ·
∑

i

α′
t′,i · δt′ · aij (5.43)

In this case, the re-scaling factor δt′ cannot be put before the summation over t′. The only

simplification is to put this factor before the sum over the previous states i:

αt,j =
t−1∑

t′=0

δt′ · Pj(wt′+1 . . . wt) ·
∑

i

α′
t′,i · aij (5.44)

A more heuristic but much easier way that was pointed out by Burge (1997) consists of a

re-scaling with a constant factor; in this work, the size of the alphabet was used as such a factor,

and no numerical problems were encountered.

5.3.3 Runtime considerations

The algorithms above are derived from the efficient DP paradigm, but their practical usefulness

will be severely limited if no additional restrictions or simplifications can be made. Even if we

assume a complexity of the submodels which is linear in the sequence length (as is the case for

Markov chains), the Viterbi and forward algorithm have to make 1
2
(T −1) times more calls to the

output distribution to take the variable segment lengths into account. As an example, consider a

segment model with three fully connected states and an observation of length 300. In this case,

about 134,000 calls to the output distribution have to be carried out. Luckily, assumptions on the

model topology and the distributions lead us back to a practical scale.

Duration distributions. Discrete duration distributions are represented as histograms of the

relative frequencies. One way to reduce the number of calculations drastically is to provide min-

imum and maximum durations τmin and τmax for each state, which is obviously application de-

pendent. If we only have D values for which the duration distributions are greater than zero, the
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complexity is reduced to T ·D ·N from T ·(T−1)
2

·N . The training is then started with a uniform

distribution over [τmin, τmax]. In the case of Viterbi training that only considers the most probable

length, the values are smoothed with their left and right neighbors after each iteration.

In some applications, a restriction to subsets of the set of possible durations {τmin, . . . , τmax}

can help to further reduce the runtime.

Model topologies. One of the most efficient restrictions concerns the model topology. If we

assume a sequence of states which is restricted, the set of previous states is reduced from an

average 50% in the case of a left-right model (i. e. , there is an order on the states such that

possible state transitions only go from lower to higher numbers) up to a single state in the case of

a strictly linear model. In the latter case, the complexity is thus equal to T ·(T−1)
2

· 1, and we also

have to start filling the matrix only after the sum over all τmin from the first up to the considered

state has been exceeded.

Advance calculation and factorization of likelihoods. Without modifications, the forward or

Viterbi algorithm will call the same output density with the same segment several times to fill

the entries of different states. It is therefore much faster to apply the output distributions ahead

and store the likelihoods in a table indexed by position and length. Thereby, the complexity of

density evaluation and computing the optimal likelihood are decoupled. For some densities, this

approach can lead to further savings in runtime:

• In the case of an HMM output distribution, the HMM has to be called only once for τmax,

and the other likelihoods for segment lengths down to τmin can be retrieved from the previ-

ous columns in the forward or Viterbi matrix.

• With an MC, the total probability of a sequence can be factorized into single conditional

probabilities per base. If we store the cumulative sum of the log probabilities along the

whole sequence for each model state in advance, the calculation of a segment probabil-

ity will be reduced to two table accesses and a subtraction. We therefore do not need to

explicitly calculate and/or store the density values for different segment durations.

This calculation will assume a full available context even at the beginning of a segment

after a state transition has been observed. In reality, though, the context was generated by

a different distribution. To obtain the correct probabilities, we therefore have to call the

distribution again for the first N bases, if N denotes the context of the Markov chain, and

retrieve the probabilities for the rest of the segment from the table of log likelihoods.



Chapter 6

Extraction and Modeling of Continuous

Features

The approach for a computational modeling of eukaryotic promoters presented in this work has

so far been based on specific features of the DNA promoter sequence: Binding sites of transcrip-

tion factors, or the base composition in different segments. But as we have seen in section 3.2.2,

eukaryotic promoters do not only contain specific sequence elements that serve as targets for

interacting proteins; they also exhibit distinct physical properties. For example, the DNA of an

actively transcribed promoter has to be accessible and must not be wrapped up in nucleosomes.

In this chapter, I will therefore describe continuously valued features that can be calculated

from a DNA sequence and relate to physico-chemical properties of DNA. The first, short section

deals with CpG islands features, the rest of the chapter with the calculation of property profiles

and features that can be extracted from these profiles.

6.1 CpG island features

CpG islands hint at regions of generally low methylation and therefore an open chromatin struc-

ture (section 3.2.2). They are associated with an estimated 50 % of vertebrate promoters, but do

not exist in non-vertebrate eukaryotes such as D. melanogaster (Lyko, 2001). In the fruit fly, the

level of methylation is generally very low. Furthermore, it is not the cytosine which is methy-

lated, and therefore the characteristic under-representation of CG dinucleotides, which is a cause

of the mutations from methylated cytosine to thymine, is not observed. CpG island features can

thus not be exploited for eukaryotic promoter finding in general, but can be used for the modeling

of vertebrate promoters.

Following the definition of CpG islands (Gardiner-Garden and Frommer, 1987), three fea-

81
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tures are distinct for them:

1. GC content. For a sequence w of length T , this is

gc content(w) =
#(G) + #(C)

T
(6.1)

In the literature, a CpG island has a minimum GC content of 0.5.

2. The ratio of expected to observed CG di-nucleotides cg ratio. This is defined by

cg ratio(w) =
#(CG)

T−1

#(C)
T

· #(G)
T

(6.2)

Here, the minimum value is given as 0.6.

3. A minimum length of 200 bases for which content and ratio as defined above must be above

the given threshold.

As we will see later (chapter 8), the core of the promoter recognition system is a classifier

which labels sequences of fixed length as promoters or non-promoters. These sequences are of

300 bases length and consequently above the minimum length threshold. We will therefore use

two feature variables for GC content and CG di-nucleotide ratio, calculated on windows of 300

bases. It is possible to reduce these values to binary features, assigning a zero if a value is below

the given threshold and a one if it is above, but this would reduce valuable information at an

early stage: Ioshikhes and Zhang (2000) found that CpG islands associated with promoters have

different average feature values than those found at other places in the genome.

6.2 Calculation of property profiles

CpG islands are specific for vertebrate organisms only. But studies on different pro- and eukary-

otic organisms (Pedersen et al., 1998; Babenko et al., 1999; Pedersen et al., 2000; Ohler et al.,

2001), showed that the DNA sequence in promoters is distinct for a wide variety of physico-

chemical properties that e. g. relate to the chromatin structure and therefore their accessibility

(cf. section 3.2.2).

For a large number of these properties, parameters have been published that generally refer

to di- or tri-nucleotides. They are symmetric, i. e. , an oligonucleotide has the same parameter

value as its reverse complement. One simple example of such a property is the GC content based

on tri-nucleotides which simply counts how many guanines and cytosines are present in each

tri-nucleotide. For other properties, parameter sets have been experimentally derived, and the
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property profile
smoothed replacement

(tri−)nucleotide
raw profileDNA sequence

CGT: 8
GTT:−6

ACG: 8ACGTT... 8 8 −6...
mean value filter

(width 21)

Figure 6.1: Conversion of a sequence into a profile. The figure shows the exemplary conversion

of a short DNA sequence into a nucleosome positioning preference profile. In this case, the

experimentally derived parameters refer to tri-nucleotides; the full set is given in appendix C.

values relate to properties such as the sensitivity regarding DNA digestion enzymes (high values

pointing at low bendability), the preference to be located at nucleosomes, or the distortion angles

observed in protein-DNA-interactions (the protein-DNA-twist). The parameters of a physical

property can be used to calculate a profile of this property. A profile consists of the corresponding

values from the chosen parameter set in place of each overlapping di- or tri-nucleotide within a

given DNA sequence.

An example where the target of a DNA interacting protein is largely defined by DNA physical

properties is the P transposable element insertion site in Drosophila. Here, no clear sequence

consensus can be seen, but for a large variety of properties, the profiles at the insertion site show

distinct peaks. I explored the 14 different parameter sets of physical DNA properties compiled

by Liao et al. (2000) for this P element study; the parameter tables for all these properties are

listed in appendix C.

Because the parameters refer to di- or tri-nucleotides only, the profiles generally appear to be

very noisy. Therefore, they are smoothed with a mean value filter of a certain fixed width, usually

20–30 base pairs (Pedersen et al., 1998; Liao et al., 2000). Figure 6.1 summarizes the mapping

between sequence and profile, and examples for different property profiles of the same sequence

can be seen in figures 6.2 and 6.3.

Excursion: Filter methods. In an ideal case, a signal is observed without any distortions or

noise, and in many applications we implicitly assume that this is the case. Therefore, the noise

that we encounter in real examples (such as in figure 6.3) should be eliminated as reliably as

possible before any further processing or an extraction of features. Filtering is seen as transfor-

mation of a signal into another signal which is hopefully easier to process (for an introduction,

see Paulus and Hornegger, 2001; Niemann, 1983).

The mean filter used above is a simple example of a linear filter, a linear transformation where

the new signal can be expressed as a convolution of the original signal with a mask or window.
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Position (bp)
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Figure 6.2: Property profile of trinucleotide GC content. This picture shows the profile of a

Drosophila promoter. The transcription start site is at position 250, and one can clearly locate the

TATA box at the point of the distinct valley upstream of the TSS.

A current value vi of the signal, centered in the middle of the window, is set to the average of all

values within the window of size n + 1:

v̂i =
(

1

n + 1
, . . . ,

1

n + 1

)

·













vi−n/2

. . .

vi

. . .

vi+n/2













(6.3)

A mean filter eliminates rough changes in the signal by removing high frequencies, which

usually results in a blurred transformed signal.

Examples of non-linear filters, which will be used later to smooth the output of the promoter

prediction system, are the median and the hysteresis filter. The median filter is a so-called rank

order filter: We first determine the order of all values within a window around the current position

in a signal, in our case using the ≥-relation on real numbers. Then we set the value at the current

position to the middle value in the list of ordered values. In contrast to the mean filter, the median

filter preserves sharp edges and does not lead to blurred results.

The hysteresis threshold filter (Duda et al., 2000) shifts a smoothing cursor of a chosen height
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Position (bp)
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Figure 6.3: Property profile of protein-DNA-twist. This picture shows the profile of a different

property of the same Drosophila promoter as in figure 6.2. In contrast to the GC tri-nucleotide

content, the protein-DNA-twist parameters refer to di-nucleotides only, and the profile appears

to be more noisy.

over the signal from left to right, and the middle position of the cursor is always emitted as new

output. As long as the next considered value lies within the cursor area, the cursor position is

not moved vertically. If the next value lies above the cursor, it is moved up so that the upper rim

corresponds with the value; if it lies below the cursor, it is moved down in an analogous way.

With increasing cursor width, the curve is thus smoothed more and more.

Figure 6.2 through 6.5 are smoothed with a mean filter of 21 bases window width; this width

is used for all profile calculations throughout this work. An example of hysteresis filtering is

shown in figure 6.4 which contains the protein-DNA-twist profile of figure 6.3 before and after

hysteresis smoothing.

6.3 Features for property profiles

Figure 6.5 shows the GC content profiles of the three sequence classes within the Drosophila

training set, namely coding and non-coding sequences as well as promoters whose transcrip-

tion start site is aligned at position 250. The profiles are averaged over all sequences in the set.
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Figure 6.4: Example of hysteresis filtering. This picture shows the original profile of figure 6.3

as well as the profile after smoothing by a hysteresis filter of cursor width 0.1.

Coding and non-coding sequences, as expected, show rather uniform values with no positional

preferences. In contrast, the promoters have a distinct profile with drops in the areas of TATA

box around position 220 and the initiator at position 250. So, in the case of GC content profiles, a

distinction between the considered classes is visually detectable. But the figure gives an inaccu-

rate impression because the profile shown is averaged over a large set of sequences and does not

reflect that some promoters lack distinct profile features such as the TATA box valley. Moreover,

even in the case where a TATA box is present, individual profiles show a high degree of variation

from the average profile (cf. figure 6.2), resulting from the unique underlying sequence. Even

after smoothing with a mean filter, the profiles of single sequences appear rather noisy as can be

seen from figure 6.3.

I therefore decided to use features that do not relate to single positions within the profile, but

rather approximate the profile slope with a number of simple functions for distinct parts of the

promoter, such as the TATA box or the initiator area — corresponding to the segments generated

by the states of the promoter sequence model (see section 5.3.1).

The first set of features consists of the mean values xi of the profiles p � corresponding to

segments s � of length τi, calculated according to some profile parameter set:
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mean GC frequency per trinucleotide
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Figure 6.5: GC content of promoters, coding, and non-coding sequences in Drosophila, from

Ohler et al. (2001). The transcription start sites of the promoters are aligned at position 250.

The profiles were smoothed with a mean filter of width 21 and averaged position-wise over all

sequence profiles for the Drosophila training set.

xi =
1

τi

τi∑

k=1

pi,k. (6.4)

This leads us to an approximation by constant functions, i. e. polynoms of order zero.

Even though the individual values do not properly reflect it, a distinct ascent or descent such

as the increase in GC content before the TATA box (see figure 6.5) might be visible from a

regression line. Adding the slope coefficient of a straight regression line for p � as additional

feature thus leads us to polynoms of first order. If we assume that we minimize the mean quadratic

error, the coefficients are given as (see Press et al. (1993))

ai =
τi

∑τi

k=1 kpi,k −
∑τi

k=1 pi,k
∑τi

k=1 k

τi
∑τi

k=1 k2(
∑τi

k=1 k)2
. (6.5)

Because of the different range of the parameter sets, the coefficients ai are normalized by

âi = ai
|p|

pmax − pmin
.

pmax, pmin is the largest respectively smallest value of the property parameter set that the

profile was computed for (the range on the y axis), and |p| is the length of the whole profile in

base pairs (the range on the x axis; here 300 bases).
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Feature transformation: principal component analysis. We are not restricted to one profile,

but can in principle use features for a different number of physical properties such as the whole

set listed in appendix C. For the small data sets that we have at our hands, though, we will

quickly encounter the problem of over-adaptation of models if we explicitly use parameters for

every single feature that we can possibly extract. Many of the 14 parameter sets are also highly

correlated (see Liao et al. (2000) and the web supplement at http://www.fruitfly.org/∼guochun/

pins.html), and even if features delivered a good classification rate when used on their own, the

overall classification will not improve much when they are correlated too closely.

An elegant solution to this problem is provided by principal component analysis. The under-

lying idea is to provide a projection of the high dimensional space of all features to a subspace

of lower dimensionality which largely conserves the properties of the original space.

Starting from an orthonormal basis Φ of the original space IRD, we can express each D-

dimensional feature vector x in terms of the base vectors φ � :

x =
D∑

i=1

yiφ
� (6.6)

An approximation x̂ of x is then given by a summation of only the first d, d < D, vectors

instead of the full set, which causes an expected quadratic error of

εd = E [‖x− x̂‖2] = E [‖
D∑

i=d+1

yiφ
� ‖2] =

D∑

i=d+1

φ � TE [xxT]φ � , (6.7)

where S := E [xxT] can be estimated from the training set of feature vectors. Minimizing the

error εd with respect to the basis Φ leads to the eigenvalue problem Sφ � = λiφ
� , with the result

that εd =
∑D

i=d+1 λi (see standard textbooks such as the ones by Niemann (1983); Schukat-

Talamazzini (1995) for more details). Selecting the d basis vectors that correspond to the largest

eigenvalues therefore leads to the smallest error. To account for the quite diverse range of feature

values due to the different profile parameters, we normalize the original feature values to have

mean value zero and a variance of one and set

y = ΦT(x− µ)Σ−1, (6.8)

with Σ being the diagonal matrix containing the variance values σi for the individual features.

The PCA transformed features do not necessarily lead to an improvement of classification.

For example, if a feature is not well suited for classification, the PCA will still regard it as one of

the most important features if it has a large variance.
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6.4 Continuous densities for profile features

To allow for an integration into the existing probabilistic framework of the promoter sequence

model, we use a probabilistic modeling approach for features computed from the profiles. If

nothing else is known about the data, it is very common to assume a Gaussian distribution for

continuously valued features. Using the notation from the previous section, we therefore have a

distribution cj for a profile p within a segment as follows:

cj(p[w, τ ]) := N (x|µ� ,Σ� ) =

1
√

|2πΣ� |
exp

(

−
1

2
(x− µ� )T

Σ� −1(x− µ� )
)

, (6.9)

with the mean vector µ� and the symmetric covariance matrix Σ� as parameters of the distribu-

tion. The profile is thereby represented by a set of features which are gathered in the vector x,

computed as described in the last section.

For a data set containing Nj samples, the maximum likelihood parameter estimation of a

Gaussian distribution has the following closed solution (Niemann, 1983; Schukat-Talamazzini,

1995):

µ̂� =
1

Nj

Nj
∑

i=1

x � (6.10)

Σ̂� =
1

Nj

Nj
∑

i=1

(x � − µ̂� )(x � − µ̂� )T (6.11)

A more general approach models a profile with a mixture distribution; looking at GC content

as an example, this should account for different GC isochores, i. e. for regions with a different

overall GC frequency, or for TATA-box containing versus TATA-less promoters. In the case of

the profile features, a mixture of Gaussians with m components is given by

cj(p[w, τ ]) :=
m∑

ν=1

ajνN (x|µ��� ,Σ��� ). (6.12)

As additional parameters, we have the mixture coefficients a, with the condition that
∑m

ν=1 ajν = 1. If the number of mixture components is large enough, this mixture distribu-

tion can approximate any distribution. There is no general closed solution for the ML parameter

estimation any more, but we can regard the mixture coefficients as hidden variables and apply

the Expectation Maximization algorithm. We then have the following iterative parameter estima-

tion scheme (Schukat-Talamazzini, 1995; Hornegger, 1996): First we use the m components to

calculate the a posteriori probabilities γjν for each of the Nj samples to belong to component ν:
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γi
jν =

ajνN (x � |µ��� ,Σ��� )
∑m

ν=1 ajνN (x � |µ��� ,Σ��� )
, (6.13)

then we use them to re-estimate the parameters:

âjν =
1

Nj

Nj∑

i=1

γi
jν (6.14)

µ̂��� =
1

∑

i γ
i
jν

Nj∑

i=1

γi
jνx

� (6.15)

Σ̂��� =
1

∑

i γ
i
jν

Nj
∑

i=1

γi
jν · (x

� − µ̂��� )(x � − µ̂��� )T (6.16)

As an example initialization, the mixture coefficients can be set to uniform values, the mean

to randomly chosen samples x � , and the covariance matrix to a diagonal matrix with the nonzero

entries set to the variance calculated over the whole sample set.

At this point, I have presented probabilistic models for sequence and physical properties of

DNA sequences. The following chapter will now look at the problem of classification: How can

we use these models to decide which class a sequence belongs to?
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Classification and Evaluation

Classification of a pattern means that we assign one of k, 1 ≤ k ≤ K classes to a feature vector

derived from the input pattern. Thus, the classes represent a partition of the feature vector space

and might be explicitly given by the application — as is the case with promoter and non-promoter

— or derived from the data in an un-supervised way; the estimation of mixture distributions

as presented in the previous chapter can be considered as un-supervised learning. Note that in

the case of DNA sequence-based classification, the feature vector consists of the nucleotides

of the sequence, and no feature extraction step is necessary. A classification based on physical

properties represents the case where we first extract features from a pattern, and then decide on

the class of the pattern based on these features.

In the literature, three different approaches for classification are usually considered: Statisti-

cal, distribution-free, and non-parametric classifiers (Niemann, 1990; Duda et al., 2000). In this

work, we will refer to the first two approaches only, where the classification is based on param-

eters that are learned from the data, either representing a distribution of the features themselves

or a function that separates the different classes in feature space. In contrast, non-parametric

classification is directly based on the whole or a representative part of the training set.

The following two sections discuss statistical and distribution-free approaches for classifi-

cation. The last section turns to different aspects of assessing the quality of the predictions that

result from classification.

7.1 Bayes classifier

Statistical classification is based on the assumption that feature vectors x = (x1 . . . xD) ∈ IRD

are generated by a two-step random process. First, the class which the vector belongs to is chosen,

according to the a priori probabilities Pk = P (Ωk), with 1 ≤ k ≤ K,
∑

k Pk = 1. Then, the
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vector itself is generated by a probability density function P (x|Ωk), conditioned on the class

that was chosen in the first step. We saw examples of such densities in the previous chapters:

continuous densities such as Gaussian distributions in the case of the continuous-valued features

derived from profiles, but also discrete densities such as Markov chains in the case where the

nucleotides of a sequence were directly considered as features.

How can we use the densities to make a classification as successful as possible? From a

formal point of view, our goal in classification is the identification of a decision function

δ(Ωk|x),
K∑

k=1

δ(Ωk|x) = 1 ∀x ∈ IRD. (7.1)

This is a randomized decision rule where one vector is assigned to each class with a certain

probability, and the decision might thus change for two subsequent evaluations of the same input

vector. We want to choose the function in such a way that the overall cost or risk is minimized. A

detailed derivation of such an optimal classifier can be taken e. g. from (Niemann, 1983); here, I

only sketch the outline and the main result.

The risk is quantified by a matrix R, with entries rjk that denote the cost of a mis-

classification of a vector which belongs to class Ωk but is put into class Ωj . The expected risk R

associated with a particular decision function δ is then given by

R(δ) =
K∑

k=1

Pk

K∑

j=1

rjk

∫

IRD
δ(Ωj|x)P (x|Ωk)dx (7.2)

A minimization of this risk follows the consideration that the value of the integral is mini-

mized if the value of the integral term is minimal for every possible feature vector x. In the end,

this leads to the deterministic decision function:

δ∗(Ωk|x) = 1 if uk(x) = min
j

uj(x) (7.3)

δ∗(Ωj|x) = 0 ∀j, j 6= k

with the test variables

uj(x) =
∑

k

rjkPkP (x|Ωk). (7.4)

If we assume uniform mis-classification costs, more specifically of rjk = 1, j 6= k, and

rkk = 0, the test variables simplify to

uj(x) =
∑

k,k 6=j

PkP (x|Ωk). (7.5)
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In this case, the decision rule is equivalent to choosing the class with the largest a posteriori

probability P (Ωk|x). This is known as the Bayes classifier and has the smallest possible mis-

classification rate under the assumption of the zero-one-cost function, provided that the correct

conditional densities are known. In reality, these densities can only be estimated from data, and

apart from errors in parameter estimation due to limited data, it is often unknown whether the

data is indeed generated by a member of the density family of our choice.

In this work, we use a slightly modified Bayesian classification rule:

• Even though we have a two-class problem — promoter or non-promoter — the non-

promoter class consists of two distinct sub-classes, namely coding and non-coding, non-

regulatory sequences. We keep the models for these two classes separate, perform the de-

cision on the best background class against the promoter class, and do not care whether

the correct background class was chosen. By doing so, it is easier to compare different

classifiers, some of which use explicit models for coding and non-coding sequences. An

alternative way would be to model all non-promoter models with a more complex mixture

distribution.

• Now that the full genomic sequence and an estimate on the length and number of genes are

available for both human and Drosophila, we would in principle be able to estimate the a

priori probabilities for promoters and non-promoters. But instead of a specification of fixed

a priori probabilities for the individual classes, we rather perform the classification based

on a (variable) threshold of promoter against best non-promoter class, and set the a priori

probabilities to uniform values. There are two reasons to proceed in such a way:

1. The Bayes classifier is based on the assumption of a zero-one loss function. However,

it is unclear if this is indeed the case in practical applications, and might also change

from application to application. One user might be interested in finding the true pro-

moter at all cost, possibly tolerating a large number of misclassifications which are

then eliminated by subsequent wet lab experiments. On the other hand, another user

might only want to know whether one reliable prediction is made on his sequence of

interest.

2. Even though genome-wide a priori probabilities can be calculated, they differ consid-

erably from the ones in small fractions. The gene (and therefore also promoter) density

is different on different chromosomes, and even more within chromosomes. Further-

more, researchers that are interested where a promoter of a specific gene is might have

additional information about it. For example, if they already know where the coding

part is, it is very likely that they will search for promoters in the sequences upstream

from the coding part only, which again results in very different a priori probabilities.
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The final decision rule therefore looks as follows if the promoters are assigned to class Ω1

and the background sequences to Ω2 . . .ΩK :

δ(Ω1|x) = 1 if (log P (x|Ω1))/|x| − max
i,2≤i≤K

(log P (x|Ωi))/|x| ≥ ν (7.6)

δ(Ω1|x) = 0 otherwise,

with a threshold ν on the difference between the length normalized promoter and best non-

promoter log likelihood.

7.2 Neural networks

Instead of modeling the classes in an appropriate way, such as by densities in the context of

statistical classification, one can also learn a parametric function that describes the boundaries of

the classes in the input feature space.

One approach is to identify the best out of a given class of functions, for example of linear

or quadratic shape. General, nonlinear discriminative functions that are able to separate classes

whose samples cover arbitrarily shaped areas in the input space are often learned in the form of

artificial neural networks (ANNs). A wide variety of literature has been published on this topic,

and Bishop (1995) gives an excellent overview from the pattern recognition perspective, with an

emphasis on the relation to statistical classification.

7.2.1 Architecture

ANNs were originally motivated by the structure of the central nervous system of living organ-

isms, which consists of a large number of simple computational units that achieve their power by

strong interconnection. The basic unit of an ANN is called a neuron or node. Each neuron qj is

connected to a number of other nodes: a set Ij from which it receives input signals, and a set Oj

to which it sends its computed output activity. The connections are weighted, and these weights

θij constitute the set of parameters that have to be learned.

The processing steps inside each neuron qj are:

1. Computation of the input activity aj . The signals si from all neurons qi that belong to the

set Ij are combined with the weights associated with the connections, e. g. by a scalar

product. An additional bias or threshold value θj is used to shift the overall input and can

be conceptually integrated by an additional neuron in the input set whose activity is always

set to one.
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Figure 7.1: Example for a multi-layer perceptron with two layers of weights. This example

has four input nodes which receive the feature vector, two nodes in the hidden layer, and one

output node which emits the network output. Note that there are no recurrent connections; every

node sends signals only to nodes in the next layer. Some weight labels are omitted for clarity.

aj =
∑

i,qi∈Ij

siθij + θj (7.7)

2. The input signal is transformed by means of an activation function f(aj) which is then

sent as signal sj to other neurons in the set Oj. The underlying idea is that if the in-

put activity is strong enough, the neuron is activated and fires, i. e. sends a signal to the

nodes in set Oj. Therefore, the activation function is often realized as a step function or a

mathematically better tractable differentiable approximation such as the sigmoid function

f(aj) = 1/(1 + e−aj ). For some problems, a linear activation function is better suited to

ensure an unrestricted range of values.

A common topology of neural networks consists of a multi-layer architecture where the nodes

in one layer receive inputs exclusively from the previous layer and send their activity only to

neurons in the next one. ANNs of this particular topology are known as feed-forward networks or

multi-layer perceptrons (MLPs). The units in the input layer are directly fed with the components

of the input vector; one or more hidden layers perform the computations; and the activity of

the output layer neuron(s) constitute the response of the network. In neural networks which are

applied on classification tasks, the output layer often contains one node per class, and the network
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is trained on a target vector where the vector component of the correct class is set to one and the

others to zero. For a two-class problem, one output node is used, and samples from the one class

are trained on target values of one and the others on target values of zero. Figure 7.1 shows an

example of an MLP network with two layers of weights and a single output node.

By the following intuitive reasoning, MLPs with three layers of adaptable weights are able to

learn arbitrarily shaped decision functions, even if samples of the same class populate separate

areas in feature space: The first layer learns linear decision functions, the second one combines

them to closed areas, and the third provides a combination of several areas. It was shown that

even two-layer networks have this property. For a practical application, though, it is not known

how large the layers have to be, i. e. how many nodes are needed. Neural networks also underly

the bias/variance tradeoff which means that we cannot simply make the network arbitrarily large

without the risk to over-adapt to the training data and lose generality on unseen samples.

The ability of neural networks to approximate any function makes them not only suitable

for classification purposes, but also for regression problems of any kind — classification can be

seen as a special regression problem which refers to the approximation of the unknown decision

function. In turn, ANNs can therefore also be used to estimate arbitrary posterior probability

functions which are then plugged into a Bayesian classifier. This is not further examined in this

work, and the reader is once more referred to the book by Bishop (1995).

7.2.2 Learning the weights

We now turn to the problem to determine a set of optimal weights Θ for a multi-layer network of

given topology in a supervised way. We assume that for every input vector x, a target vector t(x)

is given; the output that is in fact computed by the network is denoted by y(x, Θ). We follow the

outline of Bishop (1995) where the error function R, which the weights shall be optimized for,

is only assumed to be differentiable and additive:

RΘ(X) =
∑

x
RΘ(x)

Finding optimal weights corresponds to a minimization of the error, and because of the ad-

ditive error function, we can compute the derivative of R with respect to the weights for each of

the patterns independently. We further assume that the input activity aj of node qj is computed

with a scalar product as in equation 7.7.

We start by processing each pattern through the network — the forward propagation — to

compute the error function and the activation of each neuron. The derivative of the error with re-

spect to a particular weight θij depends only on the summed activity aj of the node the connection

leads to:
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∂R

∂θij

=
∂R

∂aj

∂aj

∂θij

(7.8)

The derivation of the activation aj with respect to weight θij is equal to the signal si coming

from node qi. Setting δj ≡
∂R
∂aj

, we have the derivation in the general form

∂R

∂θij

= δjsi. (7.9)

In the output layer, sj is equal to yj, and we have

δj =
∂R

∂yj
f ′(aj). (7.10)

For the hidden layers, δj can be written as follows using the chain rule:

δj ≡
∂R

∂aj
=

∑

k

∂R

∂ak

∂ak

∂aj
,

with a sum over all nodes to which node qj sends a signal to. This can be finally written as

δj =
∑

k

θjkδkf
′(aj). (7.11)

Thus, starting from the derivation for the output layer, we can propagate the error back

through the network, recursively updating the layers one by one. This is why this algorithm

is called error back-propagation. The concrete form of the update equations depend on the indi-

vidual error and activation functions.

In its simplest form, back-propagation uses a fixed-step gradient descent technique to subse-

quently change the weight values. For the first weight layer, with si equal to the input xi, this

leads to

∆θij = −ηδjxi, (7.12)

where η is a pre-specified fixed learning rate, and with analogous updates for the other layers.

The probably widest spread error function is mean square error (MSE). If εx denotes the

error observed for input pattern x,

εx = y(x, w)− t(x),

MSE is given by

RMSE(X) =
1

2

∑

x
‖εx‖

2. (7.13)
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For classification purposes, the use of cross-entropy is better suited, as the error measure is

directly related to the classification performance. For a two-class problem with target value 1 for

class Ω1 and 0 for class Ω2 , we have

RCE(X) = −
∑

x∈Ω1

ln(1 + εx)−
∑

x∈Ω2

ln(1− εx) (7.14)

Interestingly, this is equivalent to an optimization of the maximum mutual information ob-

jective function for a two-class problem and equal a priori probabilities (see equation 5.3).

There are a number of more sophisticated algorithms to train the weights of a neural network.

Many of them start from the idea of back-propagation, but include a momentum term to quickly

traverse the error surface, or take the second derivation and therefore the curvature of the error

surface into account. None of them is considered in this work, as the standard back-propagation

algorithm is good enough for the problem that the networks are supposed to deal with.

Early stopping. During the training of a neural network, crucial attention has to be paid to

over-adaptation. The back-propagation algorithm is a gradient descent approach which leads to

a locally optimal reproduction of the desired output for the training data. Nothing guarantees,

though, that the performance on unseen data will be equally good. Therefore, it is common

practice to set aside an independent part of the training sample on which the net is evaluated

throughout the training. It is expected that the error on this validation set will at first decrease

in the course of the training, but will increase again after a certain number of iterations when

the net starts to over-adapt to the training data. At this point, the training is ended before the

local optimum is reached on the training data (“early stopping”), but at the benefit of a better

generalization. An alternative to early stopping is to provide Bayesian regularizers on the weights

(Bishop, 1995, chapter 10).

The back-propagation algorithm provides another means of reducing over-adaptation: Apart

from the learning rate η, an additional parameter can be provided that constitutes a threshold on

the error back-propagation: If the net output for a certain input vector has an error of less than ν,

it is not back-propagated any longer. This is especially useful for classification problems, where

one is not interested in a reproduction of the class labeling, but rather in a correct classification,

i. e. that the output is close enough to the value associated with the correct class.

7.2.3 Feature pre-processing

For practical applications, a pre-processing of the input data can considerably help to improve the

performance of an ANN classifier. Here, I mention two pre-processing steps which are generally
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useful independent of the application.

If the amount of data in our training set is not representative for the a priori probabilities

of the classes, back-propagation will lead to an over-adaptation to the more frequent classes.

The first step in pre-processing is therefore an equalization of the amount of training data that is

available for the distinct classes. It is usually accomplished by propagating the samples of the less

frequent classes more than once. If enough data is at hand, one can also alternatively eliminate

samples from the more frequent classes.

The second step is input normalization. In some cases, the input vector to a neural network

consists of components whose continuous values might differ significantly, but are independent

of their relative importance. By normalizing the data to have means zero and variance one, all

the components xi of an input vector x are scaled by

x̂i =
xi − µi

σi

, (7.15)

where µi and σi are the mean value and variance of component i, computed on the whole

training set. This ensures that all input vector components have the same order of magnitude,

and are also comparable to the network weights which are randomly initialized to values between

zero and one.

7.3 Criteria of success

In the description of classifiers, I have so far left aside the problem how to compare the per-

formance of different approaches. I finally discuss some measures that concisely describe the

success of a two-class classification. In this case, members of one class are often referred to

as “positives” — here, the promoter sequences —, whereas the members of the other class are

called “negatives” — here, the non-promoters.

The outcome of a classification experiment leaves us with a number of correctly classified

samples from both classes, the “true positives (TP)” and “true negatives” (TN). In the same

sense, the mis-classified samples are called “false positives” (FP; members of the negative class

that were put into the positive one) respectively “false negatives” (FN; samples from the positive

class believed to be from the negative class). The correlation coefficient (CC) of an experiment

is calculated using these four numbers; it is defined by

CC =
(TP · TN)− (FN · FP)

√

(TP + FN) · (TN + FP) · (TP + FP) · (TN + FN)
. (7.16)

The values range between −1 and 1; a CC of one means perfect prediction, a CC of zero
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occurs for random predictions, and a CC of −1 shows perfect anti-prediction. The CC value

depends on the proportion of negative and positive samples, which means that it cannot be com-

pared across different data sets in general.

The sensitivity sn and specificity sp of a classification are defined as

sn =
TP

TP + FN
· 100, sp =

TP
TP + FP

· 100. (7.17)

The specificity shows which part of the set of all predictions is actually true, and sensitivity

describes how many of all positives were successfully identified by the classifier. A synonym

of sensitivity therefore is “true positive rate” and we can define the rate of false positives, true

negatives, and false negatives in the same manner.

For both neural network and Bayesian classifier, we can tune the classification towards the

one or the other class, either by putting different thresholds on the neural network output, or by

expecting a minimum distance between the a posteriori probabilities for the different classes.

A single number that describes the performance of a classifier is the equal recognition rate

(ERR); we tune the threshold to the value that leads to the same recognition rate for both classes,

i. e. where the rate of true positives equals the rate of true negatives. Obviously, this threshold is

arbitrary and might not correspond to the one that is finally used in a system.

To judge the performance in a more global manner, we can calculate the true positive rate

for any given rate of false positives. A graph where the true positive rate is plotted on the y-axis

against the false positive rate on the x-axis is called receiver operating characteristics. In our

case, we plot the ROC curve from 0 to 100 percent in one-percent steps. After this, we apply the

trapezoid rule to numerically compute the integral of the ROC curve. This leaves us again with

a single number, but one that was computed over the full range of the classifier performance.

The highest achievable value is 10,000 (100 · 100, i.e. perfect recognition for all rates of false

positives); a random classification results in a value of 5,000.

These are just some out of many different evaluation criteria; the reader is referred to Baldi

et al. (2000) for a recent discussion.



Chapter 8

MCPROMOTER: System, Experiments and

Results

The focus of this thesis lies on computational methods for the identification of proximal promoter

regions — and the transcription start sites contained in them — in eukaryotic genomic DNA. In

the following pages, I describe the MCPROMOTER system that I developed to solve this task.

Several models of promoters are presented, owing to the ideas and concepts of a probabilistic

modeling of biopolymer sequences introduced in the previous chapters. These models are now

evaluated on real human and Drosophila data. At the beginning, though, stands the general design

of the system.

8.1 General remarks

8.1.1 Outline of the system

The general outline can be seen in figure 8.1. Both strands of a contiguous DNA sequence are

analyzed independently for promoter occurrences. A window of 300 base pairs is moved along

the sequence in the 5’–3’ direction, in steps of 10 base pairs. This sequence window is then

evaluated by probability density functions of promoters, coding, and non-coding sequences. The

results of the density functions are fed into and scored by a classifier. The output of the classifier

then constitutes a graph along the sequence, which is smoothed by a simple filter method. Finally,

a list of promoter predictions is delivered which corresponds to local maxima of the smoothed

result score graph.

The following sections describe the application of different probability density functions and

classifiers for both human and Drosophila promoter finding. I start with rather simple density

101
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Figure 8.1: Outline of the MCPROMOTER system. See text for explanation.

functions, and we will see whether and how more complex density functions, which represent

the knowledge about the underlying biology more appropriately, improve on the problem of

eukaryotic promoter recognition. Also, differences between the performance of Drosophila and

human models will be pointed out. Before that, I discuss the design and evaluation of these

experiments.

8.1.2 Experimental design and evaluation

The central part of the system is the classification of a 300 base pair long sequence into promoter

or non-promoter. Therefore, two experimental setups are useful: The first evaluates the perfor-

mance of the classifier on these fixed-length sequences, and the second one the entire system for

promoter recognition in long genomic DNA sequences. In analogy to image processing prob-

lems, the first application can be seen as classification, the second as localization of an object

against a variable background.

Evaluation of the classification. The parameters of the density functions and the classifier

are estimated on the data sets of 300 bp long sequences described in chapter 4. To assess the

performance of an approach, a large part of the data is used to estimate the parameters, and a

different part serves as an independent test set. To obtain reliable results that are not biased by
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this arbitrary division in training and test set, I use cross-validation, i. e., repeat the experiment

several times with different divisions in training and test set such that every sequence has been in

the test set exactly once. Then the average over all experiments is computed and used as a result

for comparison. For the human data, the experiments are carried out five times; in the case of

Drosophila, where less data is available, only three times. If nothing else is stated, classification

results always refer to these averaged cross-validation results. Measures that are used to describe

the success of classification were introduced in section 7.3. For the assessment in this work, ROC

curves and integral values will be used throughout to compare different approaches because they

provide a global judgement of the quality of a given classifier. Nevertheless, I also provide the

still popular equal recognition rates and correlation coefficients.

Evaluation of the promoter recognition system. The situation is different when we turn to

the problem of identifying transcription start sites in genomic sequences: Here, we scan along

a contiguous sequence which might contain one or more promoters at unknown locations, each

of which might cause several neighboring windows to be classified as promoters. I therefore

adopted the measures proposed by Fickett and Hatzigeorgiou (1997). They evaluated the success

of promoter predictors by giving the percentage of correctly identified transcription start sites, the

true positives, versus the false positive rate. A TSS is regarded as identified if a program makes

one or more predictions within a certain “likely” region around the annotated site. In contrast to

the definition for classification problems (see section 7.3), the false positive rate for localization

problems is defined slightly different: It refers to the number of predictions within the “unlikely”

regions outside the likely regions, divided by the total number of bases on both strands contained

in the unlikely set. The FP rates are thus given per base; in other publications, they are sometimes

given per base pair. In cases where the whole sequences are evaluated on both strands, the FP

rate per base pair is thus twice the FP rate per base. Which region is regarded as likely depends

on the knowledge about the annotation of the TSS that is available: For exactly annotated TSSs,

Fickett and Hatzigeorgiou (1997) used a region from -200 to +100 around the annotated TSS,

and the remaining sequence parts are regarded as unlikely.

On the large genomic Adh region from Drosophila, the TSSs are not experimentally con-

firmed but based on 5’ cDNA alignments. Here, I chose a larger region of 500 bases upstream

and 50 bases downstream of the annotated TSS as the “likely” region. A similar scoring was

proposed for the evaluation of human chromosome 22 by Scherf et al. (2001); but as the 5’ UTR

regions can be very large in humans, they considered a larger region of -2000 to +500 as likely.

The upstream region is always taken as the “likely” region, even if it could possibly overlap

with a neighboring gene annotation on the same strand. The “unlikely” region for each gene

then consists of the rest of the gene annotation, from the end of the likely region downstream
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of the TSS to the end of the final exon. Predictions in other parts of the sequences are ignored.

Finally, the average distance of predictions from the annotated transcription start sites is used to

assess whether the positional accuracy of TSS predictions changes for the different models under

consideration.

8.2 Sequence-based models of promoters

The first group of promoter finding approaches presented in this work attempts to identify pro-

moters with models for different classes of sequences. All the previously published systems

discussed in section 3.3 belong to that category.

At first, promoter and background sequences are represented by different Markov chain mod-

els (cf. section 5.2): full-order, interpolated, and variable length Markov chains. I also discuss the

benefits of different objective functions. The next section turns towards a modeling of promoter

sequences by stochastic segment models (cf. section 5.3). Both of these approaches use a mod-

ified Bayesian classifier. In the final section, a neural network taking the output of the density

functions as feature variables, replaces the Bayesian classifier to allow for non-linear depen-

dencies. The different classification approaches are evaluated on human and Drosophila data

throughout, and the section is closed by a comparison of the results obtained on genomic data.

8.2.1 Markov chain models

The general picture for the Markov chain model system is as follows:

• One Markov chain model each is used for promoter, coding (exon), and non-coding (intron)

sequences (following the general Markov chain equation 5.6).

• A modified Bayesian classifier as described in section 7.1 is used as classifier (equation

7.6).

As the Markov chain models are not position-specific but stationary, we can expect that a

promoter sequence causes a good score in a number of consecutive windows. The output of the

classifier is therefore post-processed by a hysteresis filter (see section 6.2) that smoothes local

maxima which are separated by only a shallow valley. The cursor width is chosen once by visual

inspection (0.015), and then left constant for all applications.

Furthermore, each Markov chain for a background class is evaluated on both sense and anti-

sense strand of a sequence, and the likelihood is a mixture of sense and anti-sense likelihood.

The underlying reason for this is that we do not expect a promoter on the forward strand if we

detect a coding or non-coding region on the reverse strand. The mixture weights are set to 0.5
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Figure 8.2: The Markov chain promoter finding system.

each; there is no general strand specific bias for the location of a gene. From a practical point

of view, this leads to a strand-invariant background model which has to be evaluated only once

even if we look for promoters on both strands of a sequence.

Figure 8.2 (cf. the system outline in figure 8.1) gives the refined system for MCPROMOTER

— the Markov chain promoter finder.

Full-order Markov chains. The left part of figure 8.3 shows the receiver operating character-

istics of the modified Bayes classifier with full-order Markov chain models and human sequences

(section 5.2.1). The MC parameters are estimated with the Maximum Likelihood objective func-

tion (equation 5.10), discounted by one to ensure non-zero probabilities. All three models —

promoter, coding, and non-coding sequences — have the same order. The ROC curve is aver-

aged over all five cross-validation experiments on human sequences. We can see that the best

result is obtained for fifth-order Markov chains; MCs of shorter order do not capture all the

sequence characteristics, and MCs of higher order over-adapt to the training data and perform

worse on unseen data.

Next, I examined the influence of an additional Maximum Mutual Information Training of

the parameters (section 5.2.4, equation 5.25): After the initial ML estimation as above, the model

parameters are refined with up to 30 iterations of the corrective training algorithm. 20 % of the

training data are set aside as validation set on which the MMI function (equation 5.3) is evaluated
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Figure 8.3: Classification of human sequences with full-order Markov chain models. Markov

chains of different order are compared; the left picture shows the ROC results from ML estima-

tion, and the right picture from an additional MMI estimation of the MC parameters. The best

performing fifth order models achieve an ERR of 82.2 % (ML) and 82.4 % (MMI).

after every round. As soon as the objective function starts to get worse on the validation set, the

estimation process is stopped. Figure 8.4 shows the convergence of the estimation process for the

5th order Markov chain models of one cross-validation experiment. With the help of corrective

training and model interpolation using a constant weight of 0.98 for the old model and 0.02 for

the new one, a steady convergence behaviour is achieved.

When we compare the MMI estimated MCs (figure 8.3, right panel) with the ones trained

only by the ML objective function (left panel), we observe a small but clear improvement in

classification: The ROC integral value for the fifth order models, which performed best, increases

from 9003.4 to 9038.8, and the best correlation coefficient rises from 0.52 to 0.54. More notable

than these small improvements is the observation that better results are achieved for Markov

chains of every examined order, pinpointing the general usefulness of MMI estimation on human

data.

The overall picture is the same when we turn to the ML training on Drosophila data (figure

8.5, left panel). But here, the MMI training does not lead to improved classification; the results

are almost identical to ML estimated Markov chains. First of all, the MMI estimation is not

guaranteed to deliver better results than ML. Second, the iterative nature of the MMI estimation

carries an inherent danger to over-adaptation. Because the data sets are quite small, I use the

same data for the ML initialization and the subsequent iterative MMI estimation. Therefore,

the disjoint validation set, which is used to decide when to stop the iterative MMI estimation,

has been used before in the ML estimation and is less suited than a completely independent
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Figure 8.4: Optimization of the MMI objective function. This figure shows the average MMI

value per sequence during a run of the iterative MMI parameter estimation on the 5th order

Markov chain models for human sequences.

set. Besides, the ML estimated parameters of higher order MCs for Drosophila are so strongly

adapted to the training set that they are able to perfectly classify it. Therefore, no training data

are left for the corrective MMI training, which only looks at wrongly classified sequences.

So far, the order of the models is chosen after the evaluation on unseen data. It would be better

if we could directly estimate the optimal order of a model from the training data itself, before

it is applied on test data. One way to do so is to use the algorithm in figure 5.5: This algorithm

performs a cross-validation on the training data to obtain estimates for the objective function

applied on models of different order, and chooses the order that delivers the best estimate. Again,

different objective functions are possible; estimates for the ML and MMI functions on human

data obtained by five cross-validation rounds are given in table 8.1. ML selects fourth order

models for exons and promoters and a sixth order model for introns — this reflects the fact

that we have more intron data available than exon or promoter sequences. MMI model selection

leads to fourth order models for exons and introns and a fifth order model for promoters. Both

approaches are slightly worse than the best full-order models from above: ML delivers a CC of

0.51 and a ROC integral of 8915.3 with an ERR of 80.8 %, MMI a CC of 0.52 and a ROC integral

of 8950.9 with an ERR of 81.3 %. The optimal ML models are used as concurring models in the

evaluation of the MMI function.
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Figure 8.5: Classification of fruit fly sequences with full-order Markov chain models.

Markov chains of different order are compared; the left picture shows the ROC results from

ML estimation, and the right picture from an additional MMI estimation of the MC parameters.

The ERR for the 5th order chains are 83.2 % (ML) and 82.9 % (MMI). The results for 6th order

are identical for ML and MMI, as the corrective MMI training is no longer carried out due to

perfect classification of the training set.

ML/PPX MMI

MC promoter exon intron promoter exon intron

4 3.857–3.864 3.758–3.764 3.773–3.776 1.454–1.543 1.637–1.771 1.158–1.222

5 3.874–3.882 3.770–3.777 3.740–3.745 1.367–1.437 1.667–1.819 1.191–1.254

6 3.965–3.980 3.791–3.820 3.693–3.706 1.625–1.757 1.862–2.070 1.454–1.543

Table 8.1: Optimal full-order model choice. The table shows the range of the objective func-

tion estimates that was obtained on the five cross-validation experiments on human data, using

full-order Markov chains. For the ML estimation, I compute the average perplexity per symbol,

defined as PPX(w) := e−1/T ·ln RML(w). The number of the MMI function refers to the average

negative log MMI value per sequence, and the corresponding optimal ML full-order models were

used as concurring models. For both ML and MMI, smaller numbers in the table thus refer to

models that capture the data characteristics in a better way.

Interpolated Markov chains. Starting from the order which delivered the best results for stan-

dard MC models, I examined how interpolated models (section 5.2.2) of higher order performed

on the classification task. For human data, the left side of figure 8.6 shows results with linear in-

terpolation (equation 5.13), and the right side with rational interpolation (equation 5.14). In each
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Figure 8.6: Interpolated Markov chains for human promoter classification. The left panel

gives the ROC using linearly interpolated Markov chains, the right panel for IMCs using rational

interpolation. The corresponding ERRs for the 7th order chains are 82.4 % for linear and 82.6 %

for rational interpolation.

run, 20 % of the training set were set aside to calculate the interpolation coefficients. For fifth

order models, we can see that the interpolated models perform worse than the full-order Markov

chains. But the performance of interpolated models does not decrease with higher order as in the

case of full-order MCs where over-adaptation is observed, and the overall performance gets bet-

ter. Rational interpolation, which takes the reliability of each individual likelihood into account,

delivers better results than the simpler linear approach. The same is observed for Drosophila, as

can be seen from figure 8.7. Here we can actually see that the ROC measure delivers a different

view on the quality of a classifier than the ERR measure: The ERR values are slightly lower

for all IMCs when compared to the fifth order full Markov chain, but the ROC integral values,

which judge the global performance independent of the desired false or true positive rate, rise

significantly.

Using rational IMCs of 7th order as an example, I looked at classification results of human

promoter versus only one non-promoter class at a time. A classification of promoters versus

exon sequences is much more successful than a classification of promoters versus intron se-

quences: Promoter/exon classification delivers an equal recognition rate of 92.5 % (ROC inte-

gral: 9745.6), whereas promoter/intron leads to a significantly worse ERR of only 81.8 % (ROC

integral: 9026.6). The combined classification has an ERR of 82.6 % and a ROC value of 9071.2,

which is only slightly above the promoter/intron classification because the number of intron se-

quences in the set is much larger than the number of exon sequences. This underlines the fact that

promoter and non-coding sequences contain only few significant patterns and are thus harder to
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Figure 8.7: Interpolated Markov chains for Drosophila promoter classification. The left panel

gives the ROC using linearly interpolated Markov chains, the right panel for IMCs using rational

interpolation. The 6th order chains deliver only slightly different results than 5th order chains

and are left out for clarity. The corresponding ERRs for the 7th order chains are 83.0 % for linear

and 82.8 % for rational interpolation.

distinguish from each other, as opposed to coding sequences which display the well-known bias

in codon usage and the periodicity of three.

Variable length Markov chains. An approach that copes with the exponential growth of the

number of parameters with increasing model order was introduced in section 5.2.3 – Markov

chains of variable context length. Learning VLMCs corresponds to a model structure optimiza-

tion, and two similar algorithms were described that select model structures based on a local

decision criterion. I first compare the VLMC models that are chosen by either the BW or the

RST algorithm (see figures 5.4 and 5.3), using the MMI objective function. To evaluate the MMI

function, models of concurring classes are needed; here, I chose the optimal full-order mod-

els according to an ML cross-validation (see table 8.1), which avoids the danger of over-fitted

concurring models. With this approach, it is feasible to optimize one model at a time, as the

concurring models are left constant throughout the optimization.

Figure 8.8 shows an example optimization of the exon and promoter VLMCs of one cross-

validation experiment with the BW algorithm. The optimization runs over the local cut-off pa-

rameter K, which is increased from 0 to 7 in steps of 0.25. The objective function is estimated

by repeated cross-validation estimation on the training data (see figure 5.5). For a fifth order

chain, a smaller cut-off value is obtained than for a sixth order chain, as we do not have to cut

back the tree as much. The sixth order models show clearly that low values of K at first lead to
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Figure 8.8: Optimization of the BW algorithm cut-off value. For human promoter and exon

VLMC models of 5th and 6th order, the MMI objective function is plotted against the cut-off

value K that is used in the BW algorithm.

over-adapted trees, then to a certain optimal K value, and finally to small and non-descriptive

trees at large values of K. The minimum number of occurrences that a context must have to be

included in the tree is constantly set to 10. For the RST algorithm, we face a two-dimensional

optimization problem over the minimum probability, which is varied from 0 to 2 ·10−3 in steps of

10−4, and the difference ratio r which is varied from 1.05 to 1.25 in steps of 0.05. As mentioned

in section 5.2.3, I used the same simple discounting in the final parameter smoothing step that

was also used in the BW algorithm (figure 5.4). This eliminates the smoothing parameter γmin

which is used in the original RST algorithm (figure 5.3).

The number of nodes of the context trees built by the VLMC training algorithms are given in

table 8.2. Some tendencies are noteworthy: First, a tree of low order such as 4th order is hardly

pruned; second, a tree representing a class for which a larger data set is at hand is pruned less

than those for classes with less data, as can be seen when comparing the BW trees for introns

with those for exons. With the exception of the 6th order promoter models, the RST algorithm

delivers smaller trees.

Altogether, the optimization does not completely behave as expected: For example, the num-

ber of nodes should never decrease with the model order (as is the case for promoter models of

fifth and sixth order in the BW algorithm) — if no additional information can be gained, it should
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full BW RST

order model promoter exon intron promoter exon intron

4 341 214–336 332–341 313–338 185–338 297–329 281–309

5 1365 979–1365 363–1194 1272–1365 524–1136 257–997 780–1123

6 5461 544–768 413–1074 2021–2846 1254–1831 274–1167 561–1052

Table 8.2: Size of VLMCs of different maximum order. For both BW and RST learning algo-

rithm, the range of node number of the optimal trees that were found in five cross-validation runs

on human data is shown.

BW RST

promoter exon intron promoter exon intron

MMI val. 1.4351 1.5416 1.2513 1.4323 1.5334 1.2179

# nodes 979 559 1273 1105 996 796

Table 8.3: Comparison of VLMCs learned by different algorithms. For one cross-validation

experiment on human data, the average negative log MMI values of the optimal 5th order VLMCs

for the classes promoter, exon, and intron are given, along with number of nodes in the trees.

stay the same. It must be noted, though, that trees of considerably different sizes can lead to sim-

ilar values of the objective function: Table 8.3 compares the BW and RST algorithm related to

the optima of the objective function and the corresponding trees. This behaviour might result

from the current MMI training approach: The concurring models are left constant throughout

the optimization, which is only an approximation of the real MMI objective function. But when

the models are finally used for classification, an MMI optimized model is used together with the

other optimized models. It would thus be advantageous to explore a simultaneous optimization

of all models. This leads to a combinatorial optimization problem over possible model struc-

tures, i. e. over the presence of parameters and not over their values. There is no derivation of the

objective function with respect to the presence or absence of parameters, and efficient gradient

descent approaches cannot be used. It was therefore not studied further in this work.

Figure 8.9 finally shows the results for the BW and RST algorithm. We can see that BW and

RST perform about the same; the VLMC trees of higher maximum order are indeed better than

the full-order trees (cf. figure 8.3). On the other hand, we still observe that trees of higher order

start to over-adapt to the data, i. e. have lower ROC integral values than models of smaller order.

A fully compensatory effect, as we saw for the application of interpolated Markov chains, is not
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Figure 8.9: Variable length Markov chains for vertebrate promoter classification. For both

experiments, the MMI objective function was used. The left panel gives the ROC using the BW

training algorithm, the right panel for the RST algorithm. In the case of BW, we show the results

obtained on 7th order chains. They deliver only slightly different results than 6th order chains

which are left out for clarity. For the best-performing 5th order models, an ERR of 81.9 % (BW)

respectively 82.6 % (RST) was observed.

yet obtained.

The same holds for the application on fruit fly data. In the left panel of figure 8.10, the ap-

plication of the BW algorithm using the MMI objective function is depicted. Again, the VLMCs

perform better than full-order trees, but show a tendency to over-adaptation. The right panel

shows the BW algorithm using the ML objective function; it can be seen that ML performs

worse than MMI, which was observed in all other experiments on VLMC structure optimization

as well.

Summary. The classification of promoter sequences using Markov chain models is already

quite successful, considering that no information about the structure of promoter regions is in-

corporated into the models yet: The best models achieve an equal recognition rate of 82.6 % for

human and 83.2 % for Drosophila sequences.

As expected, there is an optimal order for full-order Markov chains for which they are well

adapted to the training data without losing generality. An MMI training of parameter values leads

to an improved classification result on human data; on fruit fly data, the overall results for ML

and MMI estimation are the same.

Interpolated Markov chain models lead to the desired effect that we can increase the model

order without over-adaptation to the data. In some few cross-validation runs, a decline in clas-



114 Chapter 8. The System for Promoter Recognition

PSfrag replacements

False positive rate (%)

True positive rate (%)

4th order
5th order
6th order

7th order

00 10

10

20

20

30

30

40

40

50

50

60

60

70

70
80
90

100

(9014.7)
(9065.0)
(8985.3)

PSfrag replacements

False positive rate (%)

True positive rate (%)

4th order
5th order
6th order

7th order

00 10

10

20

20

30

30

40

40

50

50

60

60

70

70
80
90

100

(9014.7)

(9065.0)

(8985.3) (8974.9)
(8853.0)
(8871.5)

Figure 8.10: Variable length Markov chains for Drosophila promoter classification. For both

experiments, the BW algorithm was used. The left panel gives the ROC using the MMI objective

function, the right panel for ML. The best MMI optimized result (5th order) achieves an ERR of

82.6 %, the ML optimization (4th order) an ERR of 81.7 %.

sification performance is observed, which is due to the local optimization of interpolation coef-

ficients and the fact that better ML values do not necessarily lead to an improved classification.

Nevertheless, the average classification results are considerably better when compared to full-

order Markov chains — for human sequences, we observe a ROC integral of 9071.2 instead of

9003.4.

This is also the case for variable length Markov chains: they lead to equal or better results

when compared to full models of the same order in all cases. However, over-adaptation effects are

still observed, and the classification is less successful than with interpolated Markov chains. This

does not agree with the VLMC results reported by Bejerano and Yona (2001), where the authors

achieve an increasing classification rate when increasing the maximum model order. However,

the authors use manually selected parameters of the RST algorithm, and they work on protein

domains, which contain well-conserved and class-specific subsequences of up to 30 amino acids.

This is different from DNA sequence classes, where we do not encounter patterns as large as in

proteins, and where the relatively short patterns are thus still likely to occur in sequences of other

classes simply because the size of the alphabet is very small.

8.2.2 Stochastic segment models

A eukaryotic promoter does not consist of one large region with the same nucleotide distribution

at every position — this is assumed in the modeling approach presented in the last section. Rather,
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Figure 8.11: Detection of conserved regions in human promoters. On the vertical axis, the

starting position of the window on which a model was trained is given. The horizontal axis

depicts how well the model trained on a certain window position performed in all windows. See

the text for further explanation.

it can be divided into segments (see section 3.2): the region upstream from the transcription

start site, the core promoter where the main initiation complex binds, and a region downstream

from the start site. The core promoter can be further split into the TATA box and the initiator

region, separated by a spacer of approximately 15 bp. We use this broad segmentation of a pol-II

promoter region to pursue an approach for promoter recognition based on a stochastic modeling

of promoter segments.

To determine an initial promoter model structure, I performed the following experiment

(Ohler et al., 2000). A window of 10 bases was shifted along the human promoter sequences

in the training set of a cross-validation experiment. At each position, a second-order interpolated

Markov chain was trained with the window content of all sequences. This model setting ensures

that the model is not over-adapted, but is able to capture specific sequence elements. The model

was then evaluated at every position of the remaining sequences, again within a window size of

10 bases. All the scores were summed up for each window, normalized and plotted against the

position on which the window was trained (figure 8.11). High scoring windows appear in a dark

color, and if a dark region appears on the diagonal, it indicates a position specific signal within

the promoters which can be detected by the model. The only clearly visible position-specific
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Figure 8.12: Detection of conserved regions in fruit fly promoters. On the vertical axis, the

starting position of the window on which a model was trained is given. The horizontal axis

depicts how well the model trained on a certain window position performed in all windows. See

the text for further explanation.

signal is the TATA box region. Even at the TSS itself, there is no clear sign that the models

trained on this region perform better than models trained on a different part of the promoter.

This is somewhat surprising, but in accordance with the results of Zhang (1998), who found that

TATAAA is the only clear position specific six-tuple within promoters. Obviously, the window

size of 10 bases is too small to detect region-specific signals, such as transcription factor binding

sites which occur more frequently in specific parts of the upstream region.

This effect is also observed on the Drosophila dataset (figure 8.12), although we can see

that the rather GC-poor region upstream of -100 (cf. figure 6.5) scores better under the TATA

box model than other parts outside the TATA box region. In fruit fly promoters, we can also

detect a clear conservation of the initiator pattern, which appears as a second conserved black

box downstream of the TATA box region. These results suggest a modeling of promoters with a

stochastic segment model as introduced in section 5.3. For the human model, at least three states

— upstream, TATA, downstream — are suggested by figure 8.11; in the case of the Drosophila

model, at least five states — upstream, TATA, spacer, initiator, and downstream.
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Interpolated Markov chain sub-models. To determine a suitable model topology, I compared

fruit fly and human promoter models with one, three, five and also six states. Looking at the GC

content in promoter sequences (figure 6.5), an additional sixth state, which comes into play by

splitting the upstream region into two separate equally sized states, can account for the quite dif-

ferent base composition from -250 to -150 and from -150 to -50. It is possible to provide rough

upper and lower bounds on the segment lengths: the position of the initiator is known from the

data, and the overall range of spacer lengths between TATA and initiator can be taken from the

literature. Also, Bucher (1990) examined the size of the core promoter patterns. The length distri-

butions are initialized uniformly. As submodels, I use rational interpolated Markov chains since

they performed slightly better than the alternative approaches discussed in the previous sections.

The IMC order is chosen by hand — smaller order for smaller segments — and the parameters

are initialized on rather large subsequences containing the promoter parts which they stand for.

The SSM is trained with four iterations of the Viterbi training (figure 5.10), and the likelihood is

therefore also computed using the Viterbi algorithm (figure 5.9) and not the forward algorithm

(figure 5.7). Using the likelihood of the best path only also makes sense from a biological point

of view, where we expect that a pattern such as the TATA box is present at a particular position

within the sequence. The background models stay the same for all experiments, i. e. an IMC for

coding and non-coding sequences each, 7th order for the more extensive human set and 5th order

for Drosophila. Higher orders do not increase the performance.

We can see in figure 8.13 that the greatest leap forward is made by splitting up the promoters

into three regions, as figures 8.11 and 8.12 suggested. A further split does not change the overall

results considerably — for Drosophila, a slight improvement is observed, for human, a slight

deterioration. In the following, I proceed with six segments for both species, as this will give us

more flexibility when we turn to more complex models. Figure 8.14 shows the resulting promoter

model that replaces the single Markov chain in the system of figure 8.2, leading to the changed

system of figure 8.15 where an SSM has replaced the simple promoter Markov chain, and a me-

dian of width three is taken instead of hysteresis filtering. As the SSM contains explicit promoter

states, we expect that not so many neighboring windows as with MC models score high, and the

hysteresis approach is not suitable any longer (Ohler, 2000).

Full-order Markov chain sub-models. As we saw in the previous section (for example in fig-

ure 8.6), interpolated Markov chains are not prone to over-adapt with increasing context length.

When we use full-order Markov chains, we have to estimate the optimal model order by a cross-

validation estimation of an objective function on the training data to prevent over-adaptation

(table 8.1). On using this approach to train the segment model on the ML objective function, we

obtain a structure of the models as given in table 8.5. This optimization is part of the Viterbi
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model state τmin τmax order

upstream 205 230 5

3-state TATA 10 20 3

downstream 50 85 4

upstream 205 230 5

TATA 10 20 3

5-state spacer 10 20 2

Inr 5 15 3

downstream 35 50 4

upstream 1 100 115 4

upstream 2 105 115 4

TATA 10 20 3
6-state spacer 10 20 2

Inr 5 15 3

downstream 35 50 4

Table 8.4: Structure of stochastic segment promoter models with different numbers of

states. Shown are the minimum and maximum for each length and the Markov order of each

output distribution (Markov chains with rational interpolation).

training algorithm, i. e. the model order is optimized after each iteration when the submodels

are re-estimated. As the segment lengths have rather tight upper and lower bounds, though, the

optimal model orders do not change in course of the training.

At this point, we can also look at the strength of the patterns that are represented by the states

of the segment model, corresponding to the perplexity values that were determined by the ML

cross-validation during the last training iteration. Table 8.5 shows these perplexity values of the

six promoter states for human and Drosophila. We can see that initiator and TATA box models

are clearly stronger, i. e. they have smaller perplexity values than the other sub-models, and that

the initiator is considerably stronger in Drosophila than in human, especially in comparison with

the TATA box. The overall perplexity values are lower in human, as we have more training data

at hand and are able to use higher order models.

When we turn to the MMI objective function to estimate Markov chain orders, we encounter

a potential problem because of the segmental model structure. Can we regard the submodels

in other segments as concurring models, just like the models for the other classes? Figure 8.16

shows the results that are obtained when only the exon and intron models are used as constant



8.2. Sequence-based models of promoters 119

PSfrag replacements

False positive rate (%)

True positive rate (%)

1 state
3 states
5 states
6 states

00 5 10

10

15 20

20

25 30

30

35 40

40
50
60
70
80
90

100

(9363.9)
(9335.6)
(9339.8)
(9088.6)

PSfrag replacements

False positive rate (%)

True positive rate (%)

1 state
3 states
5 states
6 states

00 5 10

10

15 20

20

25 30

30

35 40

40
50
60
70
80
90

100

(9363.9)

(9335.6)

(9339.8)

(9088.6)
(9398.8)
(9416.3)
(9431.6)
(9071.2)

Figure 8.13: Stochastic segment models for Drosophila (left) and human promoter (right)

classification. For both experiments, rational interpolated Markov chains were used; the model

specifications are given in table 8.4. The 1-state promoter model corresponds to the 7th-order

interpolated Markov chain experiments (figures 8.6 and 8.7). The best ERRs are achieved for the

5-state models: 85.6 % for Drosophila and 86.9 % for humans. For the 6-state models, the ERRs

decrease slightly to 85.0 % and 86.1 %, respectively. The best CC is 0.64 for Drosophila (6-state

model) and 0.67 for human (5-state model).

TATA

105-115 bp 10-20 bp 10-20 bp 5-15 bp 35-50 bp

stream2
up-

spacer initiator
down-
stream

up-

100-115 bp

stream1

Figure 8.14: The stochastic segment model for promoters used in the McPromoter system,

from Ohler et al. (2001).

background models for each of the segments. After that, the whole segment model is used as

constant concurring promoter model when the exon and intron models are optimized. As always,

the optimal full-order models in the sense of ML are used as background models. Figure 8.16

shows that this MC order optimization according to MMI does not deliver better results in the

context of SSMs. As in the case of VLMCs, a simultaneous optimization of the models might be

better than using constant background models. Moreover, the Viterbi training is only guaranteed

to optimize the objective function when the submodels are estimated using ML (equation 5.38).

We can also see from figure 8.16 that the results for ML-optimized full-order MC submodels
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Figure 8.15: The Markov chain promoter finding system with a stochastic segment promoter

model.

model Drosophila Human

state order PPX order PPX

upstream 1 2 3.858 3 3.900

upstream 2 3 3.917 4 3.826

TATA 2 3.356 3 3.063

spacer 2 3.869 2 3.629

Inr 2 3.276 2 3.442

downstream 2 3.900 3 3.793

Table 8.5: Structure of the optimal full-order stochastic segment promoter models. Shown

are the optimal Markov order of each output distribution and the perplexity values estimated

during the last training iteration of one cross-validation experiment.

are competitive with the IMC submodels (cf. figure 8.13): for Drosophila, slightly better ERR

and ROC integral values are obtained, for human, slightly worse. I therefore use the full-order

Markov chain submodels on the evaluation of the large human data sets, especially because the

runtime for interpolated Markov chains is considerably larger than the current implementation

for variable-length Markov chains. The IMC software was developed for speech recognition
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Figure 8.16: Six-state Stochastic segment models with full-order Markov chain submodels.

On the left, the results with optimized full-order Markov chains for Drosophila are given; on the

right, the same for human promoter sequences. The model specifications resulting from the ML

estimation are given in table 8.5. The ERRs for these models are 86.5 % (Drosophila) and 86.1 %

(human).

applications, where we usually encounter a large vocabulary and a rather small context — typical

values are 5,000 words and second-order models. In this case, we cannot use a tree structure to

store the likelihoods, as each node in a context tree contains the values for all the words in the

vocabulary, even if the word was never observed in the particular context. The implementation

of interpolated Markov chains that is used in this application (Schukat-Talamazzini et al., 1997)

therefore stores the counts of all observed word chains with a length up to the context size

plus one in a hash table, and calculates the conditional probability anew for each symbol in

a sequence. This is clearly hazardous when we have large contexts and large sequences like

in our application. On the other hand, the context tree of the full-order Markov chains stores

the conditional log likelihoods and is therefore much faster. In table 8.6, user time in seconds

is compared for the human models, both for Markov chain models of sixth order and segment

models with six states, with sub-model orders as in table 8.5. We look at the likelihood calculation

of one 300 base pair sequence versus a 10,000 base pair sequence evaluated with a window of

300 base pairs moving in steps of 10 base pairs. All runtime considerations of section 5.3.3

were taken into account. The VLMC implementation is faster by almost an order of magnitude,

even before a conversion into an automaton (see appendix B) which would lead to an additional

speed-up.
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MC model SSM model
sub-model 300 bp 10,000 bp 300 bp 10,000 bp

IMC 0.06 1.79 0.45 322.76

VLMC 0.008 0.23 0.08 58.96

Table 8.6: Runtime for Markov chains and segment models. We compare the user time (in

seconds) that is needed on a 400 MHz Pentium II PC run under the Linux operating system.

MMI parameter optimization. After an initial ML training of the segment model, we can

re-estimate the model parameters according to MMI. As a derivation of the MMI re-estimation

equations has not yet been described for stochastic segment models, we simultaneously optimize

all Markov chain models, i. e. the promoter sub-models and the background models. Instead of

discriminating between the three classes promoter, exon and intron, the aim is therefore a correct

classification of the six promoter sub-models plus the two background models. On the one hand,

this could be advantageous to localize appropriate patterns for the sub-models; on the other hand,

it might “distract” the algorithm from the more important discrimination between promoter and

non-promoter sequences. The results confirm this ambiguity: For human sequences, the ROC in-

tegral increases slightly from 9379.8 (ML) to 9383.4 (MMI); for fruit fly sequences, it decreases

from 9373.3 to 9361.8.

Summary. The classification with stochastic segment models improves significantly on the

classification with any kind of Markov chain model. The apparent reason is that different density

functions now represent different parts of the promoters which leads to a more exact modeling

of the promoter structure. Both full-order Markov chains and interpolated Markov chains deliver

comparable results, but the application of the MMI objective function leads to conceptual prob-

lems because the promoter is represented by the more complicated segment model. Altogether,

the classification results could be improved from ROC integral values of close to 9,100 to values

of 9,350 and more. The best ERRs using interpolated Markov chains are 85.6 % for Drosophila

and 86.9 % for human sequences, an improvement of more than 2.5 percent points for Drosophila

and 4 percent points for human when compared to the best single state interpolated Markov chain

promoter models. The best correlation coefficient rises from 0.54 to 0.67 for the human and from

0.52 to 0.64 for the Drosophila sets.
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Figure 8.17: The promoter finding system with neural network classifier.

8.2.3 Neural network classifier

So far, the modeling of promoters allows for dependencies within a model state, but conditional

independence is assumed between the states. This might not reflect the biological reality —

studies have shown that at least in Drosophila, there are dependencies among the states, namely

between TATA box and initiator or TATA box and downstream promoter element (Kutach and

Kadonaga, 2000). If one of them is weakly conserved, it is much more likely that the other one

is strong and will obtain a good score under the model.

One way to account for these dependencies is to use a different classifier. A stochastic seg-

ment model combines the log likelihoods obtained for each sub-model in an additive and un-

weighted fashion (equation 5.33), and this final likelihood is used by the modified Bayesian

classifier of equation 7.6. Instead, a multi-layer perceptron is used from now on. It takes the

promoter and background likelihoods and the likelihoods produced by each state as input, and is

therefore able to respect arbitrary dependencies between the promoter parts (figure 8.17).

Figure 8.18 shows the resulting feed-forward network. It has nine input nodes, nine (human)

respectively six (Drosophila) hidden nodes, and one output node. The network is trained on a

different part of the training set than the segment models: first, I take half of the training data

to establish the probabilistic promoter and background models, then these models calculate the

likelihoods of the sequences in the other half. For each of the two background classes, the models

are again evaluated on both strands, and mixtures of forward and backward likelihood with uni-
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Figure 8.18: The neural network classifier for sequence model densities. The feed-forward

NN takes the likelihoods of each promoter state as well as the total likelihoods of promoter and

background models as input, leading to a total of nine input nodes. The human network uses nine

nodes in the hidden layer, the Drosophila network six.

form weights of 0.5 are presented to the coding and non-coding input nodes. All likelihoods are

normalized by sequence respectively segment length and then presented to the neural network.

At this step, the data are pre-processed as described in section 7.2.3.

To train the neural network, I used standard online back-propagation, i. e. the weights are

updated after each training sample (equation 7.12. The learning rate η is set to 0.005, and a

threshold ν of 0.05 is used to decide whether a sample is back-propagated or already close

enough to the desired output value. The SNNS package that was used to train the networks (see

appendix D) only provides mean square error as error function for back-propagation; however, I

also used conditional entropy (equation 7.14) to evaluate the network on the validation set and

stopped when the best network according to CE was obtained. A third of the network training

data was set aside as validation set. The number of nodes in the hidden layer as well as the

parameters of the training algorithm were varied to make sure that small changes in the topology

and in the algorithm settings also resulted in small changes of performance.

Figure 8.19 compares the results of the neural network classifier with the results of the best

interpolated Markov chain and segment models. Even though the segment model is now trained

on only half of the data, an overall improvement is visible. For Drosophila, the available training

data is more limited, and the two-step training process runs into problems for the cross-validation
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Figure 8.19: Results of the neural network classifier on human data. The picture compares the

five-fold cross-validation results of the neural network that takes the output of the state densities

as input variables with the ones of the Bayes classifier using the likelihoods computed by the

six-state segment model and the interpolated Markov chains. The ERR obtained with the NN

classifier is 88.3 %, the CC is 0.69.

experiments: The segment model is trained on 82 sequences only, which makes it much less reli-

able as before. For the training of the neural network, the remaining training set of 82 promoters

is used, a third of which is set aside for an independent validation and early stopping. Not sur-

prisingly, this limited set did not result in better classification results. Nevertheless, we will see

that an SSM/NN model improves on the evaluation of Drosophila genomic data where we can

make use all data for model training and do not leave aside sequences for the cross-validation

test of the classifier.

Summary. Instead of a Bayesian classifier, a multi-layer perceptron is now used to combine

the promoter state and the background likelihoods in a nonlinear fashion. The training sets are

therefore split in two parts, to train the parameters of network and segment model independently.

For Drosophila, the resulting data sets are too small to obtain reliable cross-validation results.

For human, an ROC integral improvement from 9398.8 to 9431.8 is observed for the six-state

model (equal recognition rate of 88.3 % instead of 86.1 %).

8.2.4 Localization of promoters with sequence models

To assess the quality of the densities and classifiers presented up to now, different genomic data

sets were collected and described in chapter 4. On these data sets, the best interpolated Markov

chain (IMC, section 8.2.1) and promoter segment model (SSM, section 8.2.2) with the Bayesian
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classifier as well as the neural network taking the likelihoods as features (NN, section 8.2.3) are

compared. At the beginning, we look at the evaluation on human sets with known transcription

start sites.

The first one is the set of 24 exactly mapped transcription start sites in 18 vertebrate se-

quences, collected by Fickett and Hatzigeorgiou (1997). Of these 24 TSS, some cannot be ex-

pected to be detected by the MCPROMOTER system at all:

• MCPROMOTER uses an input window of 300 bases. Two TSS are too close to the beginning

(28 respectively 143 bases) so that we do not have a full 300 bases input window. The

argument of Fickett that all predictors have to cope with this situation is not valid any more

now that we have completely assembled chromosomes.

• MCPROMOTER only retains the best of possibly multiple hits within 300 bases. In one

sequence, there are three TSSs within 295 bases, and in the case of an exact localization,

only the best would thus be kept. Because a hit is counted if it falls within the region from

-200 to +100, there might be cases where two of these TSSs can be distinguished from each

other if their predictions are separated by more than 300 bases.

As a “real” positive set, we can therefore only consider 21 out of the 24 annotated TSSs.

Table 8.7 shows the results for the different approaches described above, each evaluated on a

number of thresholds. The table shows the number of true and false positive predictions, as well

as the number of close hits for one threshold; these are predictions less than 20 bases up- or

downstream from the annotated TSS. The false positive rate is given per base and not per base

pair, as the predictor is applied independently on both strands. For the approaches that provide an

exact start site prediction, SSM and NN, the fraction of exact predictions among correct ones is

larger than for the IMC model, where position 250 within the highest scoring window is assumed

to be the start site.

The next set contains the 5’ start points of all 202 genes within the human cytomegalovirus

(table 8.8). As the exact positions of the TSSs might be some distance upstream of the start

codon in many cases, the regions from -300 to +50 are considered as likely to contain the TSSs.

The real number of TSSs is most probably lower than 202 because poly-cistronic transcripts,

i. e. transcripts containing several genes in a row, are frequently observed in viruses. We also look

at a subset of 20 exactly mapped transcription start sites and how much of them have a close hit.

The fraction of hits regarding these exact TSSs is consistently higher than the fraction of overall

hits, giving evidence to the assumption of a substantial fraction of polycistronic transcripts.

After these tests, a number of qualitative observations are possible. First, the stochastic seg-

ment models are more successful than the Markov chain models, at least for larger numbers of

true positives. It is also clear that the number of exact predictions is higher for the segment model
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model threshold TP sn FP FP rate sp close hits

0 12 57.1 63 1/1,051 16.0

IMC 0.01 11 52.4 44 1/1,505 20.0 3

0.03 9 42.9 13 1/5,095 40.9

0 11 52.4 29 1/2,284 27.5 6

SSM 0.01 9 42.9 15 1/4,416 37.5

0.015 7 33.3 9 1/7,360 43.8

0.9 10 47.6 19 1/3,486 34.5 6
NN

0.92 8 38.1 14 1/4,731 36.4

Table 8.7: Results of MCPROMOTER on a set of exactly annotated vertebrate start sites.

The accuracy of different sequence model densities and classification approaches are compared.

(IMC: interpolated Markov chains; SSM: promoter segment model; NN: neural network classi-

fier instead of Bayes)

model threshold TP sn FP FP rate sp exact TSS close hits

0 103 50.9 556 1/825 15.6

IMC 0.01 95 47.0 450 1/1,020 17.4 12 (60 %) 4

0.03 45 22.2 147 1/3,122 23.4

-0.01 103 50.9 440 1/1,043 19.0

SSM 0 92 45.5 303 1/1,514 23.3 14 (70 %) 8

0.01 57 28.2 189 1/2,428 23.2

0.9 91 45.0 373 1/1,230 19.6 12 (60 %) 7
NN

0.92 86 42.5 320 1/1,434 21.2

Table 8.8: Results of MCPROMOTER on the human cytomegalovirus sequence. The accuracy

of different sequence model densities and classification approaches are compared. The last two

columns give the number of total and close hits referring to 20 exactly mapped start sites.

because it provides an explicit model state of the initiator. Surprisingly, using the neural network

instead of the simple Bayesian classifier leads to worse results than the SSM approach, even

though the cross-validation evaluation of the classifier suggested a different outcome (see figure

8.19).

Next, the Drosophila promoter sequence models are evaluated on the 3 megabase long Adh

region. The background models are trained on a subset of the non-promoter sequences described
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Figure 8.20: Results of sequence-based promoter models on the Drosophila Adh region. The

dotted line denotes the bottom line, based on the assumption of equally distant random predic-

tions.

in chapter 4, including a total of 240 non-coding and 711 coding sequences. This was the set

used in the Drosophila genome annotation assessment project (Reese et al., 2000a; Ohler, 2000)

and ensures that the results can be directly compared. As true positive regions, the region from

-500 to +50 of 92 full-length-cDNA confirmed transcription start sites is used. The negative set

consists of the regions downstream of these start sites until the end of the gene annotations. Only

the sense strand is included because in some cases, genes are located within introns on the anti-

sense strand (Ashburner et al., 1999). Figure 8.20 compares the different approaches by plotting

the number of false positives against the true positives for different thresholds of the classifiers. It

also shows the worst case scenario of random predictions, whose slope is given by the fraction of

the size of the positive against the negative region. In agreement with the above results on human

data, the segment model is considerably better than the simple Markov chain. A noteworthy

distinction is immediately apparent: The neural network improves significantly on the results

obtained by the Bayesian classifier, suggesting that non-linear dependencies among the promoter

segments play an important role in Drosophila promoters. Above a certain true positive rate, the

additional improvement leads us closer to the random line again. Thus, the threshold which leads

to the largest Euclidean distance from the random line is a good compromise of sensitivity versus

specificity. For the best performing neural network classifier, the sensitivity at this threshold (0.9)
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Model true pos. avg. dist. (bases) close hits

IMC 44 210 13

SSM 47 157 23

NN 45 100 21

Table 8.9: Accuracy of promoter localization on the Drosophila data set. For thresholds de-

livering a comparable number of true positive predictions, the average distance of the predictions

from the annotated 5’ start of the corresponding genes is given. The right column shows the

number of close hits among the total number.

is 43.4 % with a specificity of 19.2 %.

The average distance of the predictions from the annotated 5’ ends is shown in table 8.9:

An improvement of the localization accuracy is obtained along with the improved classification.

The quite large average distance is partly caused by the fact that the start sites were derived from

alignments of cDNA sequences and not detailed mapping experiments. Therefore, a considerable

portion of the 5’ UTR might be missing, as the selected cDNAs were only known to contain the

annotated start codon. The table also contains the number of close hits, in this case hits within

+/- 50 bases of the possible start site.

Finally, the much larger set of 339 known genes in human chromosome 22 is studied. In

agreement with previously published literature (Scherf et al., 2001; Hannenhalli and Levy, 2001),

a likely region of -2000 to +500 is considered, and only the best maximum within 2,000 bases

is retained. This makes the hysteresis filtering superfluous, and we therefore use a 3-median as

output filter for all the models. As with the Drosophila Adh region, the regions downstream of

the likely promoter regions until the end of the corresponding gene annotations are taken as the

negative set. For efficiency reasons, we use the variable length Markov chain models instead

of the interpolated Markov chains within the segment model states (see table 8.6). Figure 8.21

shows the number of false versus true positives for different threshold values. Very surprisingly

and not in agreement with the smaller human data sets, the simple IMC models perform best,

and the SSM model follows slightly behind. This can be due to the much larger likely region

for the chromosome 22 promoter set; as soon as more reliable 5’ annotations are available, addi-

tional experiments will hopefully help to clarify this. As it was observed on smaller data sets, the

neural network classifier is definitely less successful than the Bayes classifier with the stochastic

segment models. It can therefore be assumed that there are no non-linear dependencies between

the promoter sub-states of the human model. The question remains open why the cross-validated

classification results are not in agreement with these results — whether the extracted training set
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Figure 8.21: Results of sequence-based promoter models on human chromosome 22. The

dotted line denotes the bottom line, based on the assumption of equally distant random predic-

tions.

is considerably different from the other promoters, or whether the localization problem is con-

siderably different from the classification problem. For the best performing interpolated Markov

chain models at the threshold with the largest distance from random predictions, the sensitivity

is 64.3 %, with a specificity of 36.4 %.

As with the Drosophila evaluation set, there are hardly any exactly mapped transcription

start sites available for the genes in chromosome 22, and we look at the average distance of

predictions from the annotated gene starts instead (table 8.10). The overall average distances are

larger than for the Drosophila set, due to the larger UTRs in human. Unlike in the Drosophila

case (cf. table8.9), the simpler models also perform better on the exact localization than the

non-linear neural network classifier. The SSM predictions have the same average distance, but a

higher fraction is close to the annotated 5’ end.

60 % of the promoters on chromosome 22 are located within one of the 540 CpG islands that

are annotated for release 2.3. Table 8.10 also shows the number of predictions which are located

within or in a distance less than 150 bp from one of these islands. Stunningly, the predictions

of all different approaches are highly correlated with the CpG islands; instead of the expected

60 %, the number is roughly 80 %. This means that CpG island correlated promoters are the ones

that are easy to recognize, and the others are much harder to predict. Chapter 9 discusses this
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Model true pos. avg. dist. (bases) close hits CpG island hits

IMC 218 254 85 179 (82.1%)

SSM 223 257 103 180 (80.7%)

NN 218 324 85 173 (79.3%)

Table 8.10: Accuracy of promoter localization on human chromosome 22. For thresholds

delivering a comparable number of true positive predictions, the average distance of true predic-

tions from the annotated 5’ start of the corresponding genes, the number of close hits within a

radius of 100 bases, and finally the true predictions correlated with CpG islands are given.

phenomenon which was also observed by other groups studying promoter prediction in vertebrate

sequences.

8.3 Property-profile-based models of promoters

After the evaluation of the sequence-based promoter predictors, the following study deals with

DNA property-based classification of promoters. Starting point is a DNA property profile, calcu-

lated and smoothed as described in figure 6.1.

To see how useful each of the possible 14 properties is, the first experiments examine how

well a classification based on every single property can be carried out. Thereby, I followed the

modeling approach of the sequence properties: A promoter is modeled by several densities for

the promoter segments, and the background by one density each for profiles of coding and non-

coding sequences. A promoter sequence segment model as above calculates the optimal segment

boundaries. Because the parameter sets are sequence symmetric, all profiles look the same no

matter whether they are calculated from the sense or the anti-sense strand, and we therefore need

to look at only one side of a sequence.

I study two sets of features: the first consists of the mean profile values within a segment or

subsequence (equation 6.4), the second one of the mean values plus the linear regression line

slopes (equation 6.5). For half of the training data, these features are calculated, using either the

whole profile for the background classes, or the six promoter segments obtained by the Viterbi

segmentation of the promoter sequences using the segment model of figure 8.14. These features

are then used to train eight Gaussian distributions (equations 6.10 and 6.11, six for the promoter

segments plus two for the backgrounds), either with one dimension if only the mean values are

used as features, or with two dimensions if the slope is used as well.

For the other half of the data, the features are calculated in the same way and passed through
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Figure 8.22: Property profile based promoter classification. The features extracted from in-

dividual profiles are judged by Gaussian distributions for promoter segments and background

classes, and the likelihoods are fed into a multi-layer perceptron.

the pre-trained Gaussians. The resulting likelihoods are taken as independent data set to train

a neural network that combines the promoter segment and background likelihoods. Thus, the

approach for classification is exactly as with the sequence models above: use densities to compute

likelihoods for promoter segments and backgrounds, and feed them into a neural network to

take non-linear dependencies into account (see figure 8.22). The neural networks are multi-layer

perceptrons with eight input nodes, six (Drosophila) or eight (human) hidden nodes and one

output node — corresponding to the network topology of figure 8.18 without a total promoter

likelihood input node — and is again trained with online back-propagation.

The performance of the individual features can be seen from table 8.11. Profiles were calcu-

lated using the parameter sets of appendix C. The two columns on the left show the results for the

mean value parameter sets, modeled by one-dimensional Gaussians, the right two columns for

the “mean+slope” parameter sets, modeled by two-dimensional Gaussians with full covariance

matrices. We use the equal recognition rate (ERR) for classification into promoter/non-promoter

and the integral over the receiver operating characteristics (ROC) as measures (cf. section 7.3).

A classification based on the profile means of the six promoter segments already results

in a surprisingly high classification performance for many of the parameter sets. The physical

property leading to the highest classification rate is protein-DNA-twist (70.4% ERR). Only B-

DNA twist leads to a classification that is just slightly above chance (51.0% ERR). Taking both

slope and mean as features is helpful in some cases, for example for DNA bendability or protein-

DNA-twist, but also makes the results worse in others, such as GC content or propeller twist.

A modeling by Gaussian mixture distributions (equation 6.12) with two components leads to

highly similar results in the case of one-dimensional Gaussians; apart from an increase for the

DNA bendability ROC value to 6824.0 and a decrease for nucleosome positioning to 7313.7, the
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mean mean+slope
physical property

ERR ROC ERR ROC

tri-nucleotide GC content 69.7 7487.5 67.7 7330.1

DNA bendability 62.7 6710.8 66.8 7092.5

A-philicity 65.8 7037.8 65.3 7073.7

protein induced deformability 65.1 7115.8 62.6 6846.1

B-DNA twist 51.0 5224.7 49.7 4952.6

protein-DNA twist 70.4 7512.0 71.2 7722.2

Z-DNA stabilizing energy 70.2 7493.1 70.0 7406.6

nucleosome positioning 69.2 7458.6 66.3 7459.3

stacking energy 67.0 7443.0 64.9 7111.7

propeller twist 68.0 7434.1 63.8 7005.6

duplex stability (disrupt energy) 64.9 6912.6 59.8 6649.6

DNA denaturation 68.0 7344.5 66.2 7199.4

DNA bending stiffness 70.1 7567.4 69.0 7320.9

duplex stability (free energy) 67.9 7295.6 66.9 7314.0

Table 8.11: Classification of fruit fly promoters based on physical properties of DNA.

results are almost the same. For the two-dimensional Gaussians, a mixture never improves on the

ROC values obtained by single one- or two-dimensional densities.

A somewhat similar picture is obtained for human promoters, as can be seen in table 8.12,

but the classification results are worse throughout, and the ranking of the individual features are

very different from Drosophila. The best result is obtained by using the mean feature values of

stacking energy; surprisingly, B-DNA twist is almost equally good — for Drosophila, B-DNA

twist derived features resulted in random classification. Protein-DNA-twist features, which lead

to the best results for the fruit fly, are clearly worse than many others.

In a last experiment, the features were combined by principal component analysis. The mean

respectively “mean+slope” values for all 14 properties were used as input, which resulted in

14- respectively 28-dimensional vectors. The following observations were made for the resulting

eigenvalues of all PCAs of the segment and background feature vectors:

1. For the mean value feature vectors, the first eigenvalue ranged from 10.2–12, the second

largest from 0.9–1.6, and at least eight eigenvalues were smaller than 0.1. Apparently, the

14-dimensional space can be reduced to a one-dimensional space without losing much in-

formation.
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mean mean+slope
physical property

ERR ROC ERR ROC

tri-nucleotide GC content 63.8 6995.3 59.4 6427.3

DNA bendability 55.2 5755.8 58.9 6200.0

A-philicity 60.5 6517.5 62.0 6705.4

protein induced deformability 55.1 5840.3 58.4 6298.9

B-DNA twist 63.1 6819.5 64.3 7022.8

protein-DNA twist 56.0 5948.4 55.9 5835.5

Z-DNA stabilizing energy 63.1 6840.8 58.7 6356.5

nucleosome positioning 60.1 6448.0 60.8 6499.4

stacking energy 64.5 7023.1 62.3 6860.5

propeller twist 60.0 6507.3 59.9 6432.5

duplex stability (disrupt energy) 60.6 6632.9 56.2 6150.6

DNA denaturation 61.1 6516.9 59.8 6415.7

DNA bending stiffness 63.5 6825.6 57.7 6250.8

duplex stability (free energy) 61.9 6890.5 59.4 6342.6

Table 8.12: Classification of human promoters based on physical properties of DNA.

2. For the feature vectors with 28 components, the first two eigenvectors are considerably

larger than the rest (10.2–13.8 and 7.8–10.3). All others were smaller than 2, and again

more than half below 0.1. Thus, an information preserving reduction to a two-dimensional

sub-space is possible.

Table 8.13 shows the results for the one- and two-dimensional modeling, using the PCA

transformed feature vectors. A clear improvement over the single-feature classification is visible

for the Drosophila data set, but not on the human data. The 28-dimensional input reflects the

ambiguity already observed for the mean+slope feature set of individual profiles. As suspected

from the small eigenvalues, using additional vectors corresponding to smaller eigenvalues does

not improve on the classification for both feature sets. Compared with the classification based

on DNA sequences, the profile based approach thus performs worse than the simplest approach

studied, the Markov chains — there, an ERR of 83.0 % for Drosophila and 82.6 % for human was

reported in section 8.2.1. The difference is even more pronounced for the similar sequence-based

classification approach using a multi-layer perceptron, with an ERR of 88.3 % on human data.
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PCA Drosophila Human

input output ERR ROC ERR ROC

14 1 74.0 7979.0 61.7 6714.3

28 1 72.9 7762.4 59.8 6493.5

28 2 68.7 7641.9 60.8 6589.5

Table 8.13: Principal component analysis of physical property features.

8.4 Sequence/profile joint models

8.4.1 Integration of sequence and profile models

The final section of the MCPROMOTER system design and evaluation describes how the sequence

and profile models are put together. In principle, the segment model formalism could easily be

extended to include densities for profile features; instead of calculating the segment probabilities

based on the sequence alone, we replace equation 5.31 by the joint probability on sequence and

profile:

Pj(w i,pi) = dj(τi) · bj(w i|τi) · cj(p i[w i, τi]) (8.1)

Now, each state comprises a probabilistic sub-model cj that describes the likelihood of a

profile p i, given the sequence and its length. No other changes are necessary, all algorithms that

were applicable to the sequence model can also be used for the joint sequence/profile model.

However, the underlying assumption that profile and sequence likelihood are independent, is

apparently not true; the profiles are calculated from the sequence, and a correlation therefore

surely exists. In practice, we therefore have to pursue a different way.

Because the neural network was clearly successful, at least for the classification task, the

same approach to use the segment densities as input variables is kept. In principle, the se-

quence/structure product probability of equation 8.1 can replace the simple sequence probability.

A more promising way, though, is to split up each likelihood input node by a sequence/profile

double node and connect them solely with each other in the first hidden layer. This automati-

cally results in a linear weighting for the relative importance of sequence and physical property,

and accounts for the dependence of the sequence and profile likelihood. Figure 8.23 shows the

resulting network topology.

The best segmentation remains solely based on the sequence probabilities instead of running

the Viterbi algorithm using the sequence/profile product likelihoods. The profile features are

thus calculated based on the best path delivered by the application of the sequence model. This
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Figure 8.23: The neural network classifier for sequence and profile model densities. The

multi-layer perceptron takes the sequence and profile likelihoods of each promoter state as well

as the likelihoods of the background models as input (16 nodes). The connections between input

and second node layer are restricted; they only combine the sequence and profile likelihoods of

each state, and the layer therefore has eight nodes. Second and third layer are fully connected;

the third layer has eight nodes in the human and six in the Drosophila model. An additional

17th input node represents the total promoter likelihood (cf. figure 8.17) and is directly and fully

connected to the third layer.

approximation makes little difference for the mean value and slope features that we extract from

the profiles because they are calculated on whole segments and should not change very much

when the segment position is slightly different.

To summarize, we therefore have the following setup for feature calculation when we include

a principal component analysis:

1. Compute the promoter segment and the background likelihoods of the actual 300 bp win-

dow with the sequence models; send the segmentation to the profile module.

2. Compute profiles of all physical property over the sequence and smooth them with a mean

filter of width 21.

3. Calculate the profile feature values for the six segments and the background for all profiles.
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Figure 8.24: The promoter finding system including structural features.

4. Perform a principal component analysis of the features separately for each promoter state

and each background model.

5. Judge the transformed features with corresponding Gaussian distributions for each segment

and background.

Without PCA, the features of one property profile are directly passed through to the Gaus-

sians. The sequence and profile likelihoods are then fed into the neural network input layer, as

can be seen in figure 8.23. There is no need for reverse background profile models because profile

parameters are symmetric and lead to the same profiles on both strands. The complete system

including structural features is depicted in figure 8.24.

8.4.2 Evaluation of the joint models

The last section of this chapter finally turns to the evaluation of promoter prediction using the

joint models. To decide which structural features are best suited for the human model, different

neural networks were trained that took the sequence likelihoods as well as the likelihoods of
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Figure 8.25: Results of sequence/profile-based promoter models on human chromosome 22.

The dotted line denotes the base line, based on the assumption of uniformly distributed random

predictions. Compare also with the results in figure 8.21. (CpG: neural network with additional

CpG island features, PRO: neural network with additional profile features)

single profile features and the PCA transformed features as input. The network which leads to

the best ROC integral value in the five-fold cross-validation experiments was finally chosen; it

was the network using the mean value set of stacking energy. Figure 8.25 compares the results

of this system with both the best IMC sequence models from figure 8.21 and the neural network

using only sequence features. It shows that for the case of human data, additional profile features

lead to no improvement over the neural network taking only sequence likelihoods as input; on

the contrary, the results are distinctly worse at the first look. However, when we examine the

correlation with CpG islands as above, we see that predictions that coincide with CpG islands

account for only 61 % (see table 8.14). This means that a highly distinct subset of promoters is

recognized when we include structural features in the model, one that is different from the CpG

island associated one that is easily captured by sequence models.

Figure 8.25 also depicts results obtained with a neural network using the sequence likelihoods

as in figure 8.18, but with two additional input features, the GC content and CpG di-nucleotide

ratio (see section 6.1, equations 6.1 and 6.2). In comparison to the complex profile modeling,

these simple features related to DNA structure perform better, but still decrease the performance

of the system. The fraction of the apparently “easier” CpG island correlated predictions is smaller
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Model true pos. avg. dist. (bases) close hits CpG island hits

CpG 209 379 72 158 (75.5%)

PRO 213 456 31 130 (61.0%)

Table 8.14: Accuracy of promoter localization with sequence/profile models on human chro-

mosome 22. For thresholds delivering a comparable number of true positive predictions, the av-

erage distance of true predictions from the annotated 5’ start of the corresponding genes, the

number of close hits within 100 bases, and finally the true predictions correlated with CpG is-

lands are given.

than without CpG island features (cf. table 8.10), but larger than with the sequence/profile joint

model. The exact numbers, along with the localization accuracy, are given in table 8.14.

As there is not enough data for a cross-validation in the case of Drosophila, the most suitable

property for the combined sequence/structure model is selected according to the best ROC inte-

gral value on the neural network validation set. Even though the PCA derived features performed

better than the features derived from any single profile, combining them with sequence features

does not lead to better ROC values on the validation set; the best value is obtained by using the

mean value set of the nucleosome positioning preference profile. Indeed, this model leads to an

improvement of the system and to the overall best results for Drosophila. This can be seen in

figure 8.26, which compares the neural network classifier with and without structural features.

For the results in figure 8.26, the sensitivity at the largest distance from random predictions

is 52.1 % at a specificity of 17.6 %. The average distance of the predictions at this threshold is

117 bases, including 25 close predictions out of a total of 48 correct ones, which is on the same

scale as the best model without structural features.

Figure 8.27 shows an example system output of the different models applied on the promoter

sequence of the beat-B gene. It has a 5’ UTR of more than 21,500 bp, and the annotated tran-

scription start site is at position 2,411,679 on the reverse strand. We can see that all the models

give a high score close to the annotated site, but that the neural network classifier output, with or

without structural features, looks more pronounced than the Bayes classifier approach. The large

difference in the likelihood of IMC and SSM on the left side of the picture is due to the applica-

tion of the Viterbi algorithm to compute the SSM likelihood. This corresponds to the likelihood

for only the best path through the promoter model and not to the total likelihood as computed

by the Markov chains. The “fuzzy” appearance of the IMC prediction is caused by hysteresis

post-processing.
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Figure 8.26: Results of sequence/profile promoter models on the Drosophila Adh region.

The dotted line denotes the bottom line, based on the assumption of equally distant random

predictions. Compare with the results in figure 8.20. (PRO: model with nucleosome positioning

profile features)

The “best” promoter predictors. The goal of this work is not only to come up with good

promoter recognition rates, but also to draw conclusions from the difference in performance

of different models. Nevertheless, a short summary about the models for each Drosophila and

human that lead to the best recognition rates in this work is provided in the following.

The best performing Drosophila system follows the outline of figure 8.24:

• Sequence background models. 5th order Markov chains with rational interpolation (equa-

tion 5.14) are taken as models of coding and non-coding sequences. They are applied on

both strands of the 300 bp sequence window, and the two background likelihoods are uni-

form mixtures of forward and backward strand likelihoods.

• Promoter sequence model. This is a six-state model as specified in figure 8.14, with ratio-

nally interpolated Markov chain submodels as specified in table 8.4. The Viterbi algorithm

(figure 5.9) is used to compute the promoter likelihood.

• Profile features. A nucleosome positioning preference profile is calculated from the se-

quence (see appendix C). As features, mean profile values are computed (equation 6.4),

once for the whole 300 bp window to be judged by the background profile models, and
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Figure 8.27: Example prediction of the Drosophila beat-B promoter. The left panel shows

the output of the interpolated Markov chain (IMC) and stochastic segment (SSM) modeling

approach, the right panel of the neural network classifier approach without (NN) and with (PRO)

structural features.

once for the segments obtained by the Viterbi algorithm and the promoter segment model.

• Profile models. One-dimensional Gaussian distributions (equation 6.9) are used to represent

the profiles of the six promoter states and the two background classes.

• Neural network. A multi-layer perceptron with the topology of figure 8.23 classifies the

features. The output is smoothed with a median of width 3. Local maxima above a user-

specified threshold are then reported as promoter predictions.

• Training. Half of the data is used to train the rational background IMCs (Schukat-

Talamazzini et al., 1997), the promoter segment model (figure 5.10), and the Gaussian dis-

tributions (equations 6.10 and 6.11), the other half to train the neural network with online

back-propagation (equation 7.12 with learning rate η = 0.005 and threshold ν = 0.05),

stopping when the best conditional entropy value (equation 7.14) is achieved on an inde-

pendent validation set (a third of the whole neural network training set).

For human, no easy “best model” can be given: On small well-mapped data sets, the stochas-

tic segment model is clearly better than the IMC (cf. tables 8.7 and 8.8). On the large chromosome

22 set though, the IMC is generally better, but for higher sensitivity, the SSM performs equally

good, and a larger fraction of SSM predictions is close to the annotated gene start sites. For the

general case, it appears best to therefore pursue the stochastic segment model approach of figure

8.15.

• Sequence background models. 7th order Markov chains with rational interpolation (equa-

tion 5.14) are taken as models of coding and non-coding sequences. They are applied on
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both strands of the 300 bp sequence window, and the two background likelihoods are uni-

form mixtures of forward and backward strand likelihoods.

• Promoter sequence model. This is a six-state model as specified in figure 8.14, with ratio-

nally interpolated Markov chain submodels as specified in table 8.4. The Viterbi algorithm

(figure 5.9) is used to compute the promoter likelihood.

• Bayes classifier. The modified Bayesian classifier of equation 7.6 is used. For contiguous

sequences, the score is smoothed with a median of width 3, and local maxima above a

user-specified threshold are reported as promoter predictions.

• Training. All the data is used to train the background IMCs (Schukat-Talamazzini et al.,

1997) and the segment model (figure 5.10).

The following chapter will now put these models and results in relation to other approaches.



Chapter 9

Discussion and Outlook

At the end of this work, the following pages provide a short wrap-up of the results, a compari-

son with related work, and the conclusions we can draw. This will lead to a number of possible

directions for future research in promoter finding, and also to the related topic of promoter anal-

ysis: Once one has identified the promoter sequences of an organism, a natural interest lies in the

identification of the regulatory elements hidden in them. The final section therefore provides a

short account of different methods for pattern discovery in promoter sequences.

9.1 Promoter recognition

Overall conclusions and comparison to related work. A very general — but maybe also the

most important — conclusion immediately comes to mind when comparing the results of fruit

fly and human promoter finding: There is no such thing as eukaryotic promoter recognition in

general. The results clearly indicate that vertebrate promoters have a structural organization that

is very different from Drosophila. In vertebrates, the outstanding sequence pattern in promoters

is their frequent localization within CpG islands, and thus, very simple models based on overall

sequence composition are more successful regarding the overall recognition rate as more compli-

cated ones. For Drosophila, a more detailed modeling of the proximal promoter region increases

the recognition rate substantially.

Another promoter predictor by Reese (2000), NNPP, was applied on the same set of the

Drosophila Adh region. It is based on a neural network that combines models of the TATA box

and the initiator. In comparison to the models developed in this work, it performs better than the

simple IMC model; starting with the SSM, the approaches in this work are more successful. Table

9.1 compares the results given by Reese (2000) with the best MCPROMOTER model. For higher

recognition rates, a reduction of false positives by a factor of about 2.5–3 is observed; at a more

143
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System sn FP rate

21.7 1/6,227

NNPP 38.0 1/2,416

53.2 1/1,096

18.4 1/38,780

MCPROMOTER 38.0 1/7,051

52.1 1/3,791

Table 9.1: Comparison of McPromoter with the NNPP predictors on fruit fly data. Shown

are the true and false positive rate on the Drosophila Adh promoter set for different thresholds

delivering comparable numbers of true positives.

restrictive threshold, this reduction can go up to a factor of 6. The localization accuracy is also

higher — the average distance of predictions from the annotated start sites is 149 bases for NNPP,

but only 117 for the MCPROMOTER models with the best classification results. Consequently,

MCPROMOTER has therefore been used by annotators of the Drosophila Genome Project to

assist in the semi-automatic annotation of the whole Drosophila genome.

Turning to vertebrate promoter prediction, the results on human chromosome 22 (figure 8.21

and 8.25) show that the performance of the Markov chain sequence models is most distant from

random predictions at a sensitivity of about 65 %. At this point, only 18 % of the true positives

are not correlated to CpG islands. This trend is even stronger when we increase the threshold of

the Markov chain models: At a sensitivity of 52.8 %, the specificity is 62.6 %, with a CpG island

correlation of 90.5 %; at a sensitivity of 39.5 %, the specificity has gone up to 72.0 %, with 94 %

located within CpG islands. This was also observed by another recent publication on promoter

finding in chromosome 22 (Scherf et al., 2001): Out of 111 true positive predictions, only 5

were not associated with a CpG island — an even more severe correlation than observed in this

work. Hannenhalli and Levy (2001) also note that models using simple CpG island features are

as successful as more complicated models. It is therefore notable that despite of their weaker

performance, sequence/profile joint models do not show a recognition that is biased towards

promoters within CpG islands.

Table 9.2 compares the results of other predictors, as described by Scherf et al. (2001) (Pro-

moterInspector) and Hannenhalli and Levy (2001), with MCPROMOTER. Furthermore, we com-

pare MCPROMOTER to the program Dragon 1.2 which had not yet been published at the time this

evaluation was done (see http://sdmc.krdl.org.sg/promoter/). A general caveat of this comparison

is that the evaluation for Hannenhalli/Levy and PromoterInspector was performed on an earlier
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System sn sp FP rate

Hannenhalli/Levy 42.9 — 1/216,440

PromoterInspector 44.9 33.6 —

22.1 57.1 —

Dragon 1.2 30.7 26.3 —

60.2 21.9 —

39.5 72.0 1/237,475

MCPROMOTER 52.8 62.6 1/115,408

64.3 36.4 1/32,411

Table 9.2: Comparison of McPromoter with other predictors on human data. Shown are the

numbers of sensitivity and specificity as well as false prediction rate, where available. This table

should be read with caution; a number of differences in the evaluation of the methods is described

in the text. A dash denotes that the information was not available.

chromosome 22 annotation release with 247 known genes, instead of the set of 339 genes used

to evaluate MCPROMOTER and Dragon 1.2.

All sensitivity numbers are given for the respective subset of known genes. PromoterInspector

does not make strand-specific predictions and does not attempt to exactly predict the TSS: It

delivers regions of varying size as result, from 193 to 2433 bp, with an average of 555 bp, and

a true positive is counted if this region overlaps the likely region to any extent. Both Dragon

and Hannenhalli/Levy therefore extend the likely -2000/+500 region by the average size of a

PromoterInspector prediction, i. e. to -2555/+1055. This is not done in this evaluation, and the

sensitivity of MCPROMOTER is therefore expected to be somewhat under-estimated compared to

the sensitivity of the other predictors. The specificity numbers of PromoterInspector and Dragon

1.2 are calculated from results given at http://sdmc.krdl.org.sg/promoter/ which use the regions

spanned by the known genes on both strands as negative set. The MCPROMOTER results in this

thesis are calculated using only the sense strand of the known genes as negative set, to exclude

genes possibly contained within introns on the anti-sense strand. To better compare the values,

we can assume that MCPROMOTER makes the same number of false predictions on the reverse

strand as measured on the forward strand. At 39.5 % sensitivity, its specificity is then 56.3 %, at

52.8 % it is 45.4 %, and at the 64.3 % sensitivity level it is 22.2 %. These results are clearly better

than the ones reported for PromoterInspector and Dragon 1.2.

The detailed results of Hannenhalli/Levy are not publicly available, and only the total number

of predictions along the whole chromosome is exactly known, so all predictions outside the
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known genes are here counted as “false” predictions. Some of these hits will certainly concern

genes not in the set of known genes, and the real FP rate is most definitely smaller. Despite

all the differences, it is nevertheless clear that the overall performance is on the same scale for

all the methods, even though MCPROMOTER appears to be more successful than Dragon 1.2

and PromoterInspector. A thorough comparison would require exactly equal test and also equal

training set conditions.

The human models of MCPROMOTER were used by different groups in virus research, such as

at the Institute for Clinical and Molecular Virology at the University of Erlangen-Nuremberg, to

guide experimental verification of promoter activity (see also Koelle et al., 2001; Rimessi et al.,

2001). MCPROMOTER is accessible to the scientific community at http://promoter.informatik.

uni-erlangen.de, and had been used about 1,500 times between April and September 2001.

Promoter sub-classes and physical properties. Concerning future work, a separate model-

ing of two promoter subclasses might elucidate whether a recognition of non-CpG-correlated

promoters is feasible at all, or if the sequence information in the proximal promoter regions is

simply not enough to define the functionality of a vertebrate promoter. Such a separate model-

ing can also help to find out whether non-linear dependencies of the promoter sub-states are not

observed for all vertebrate promoters, or whether this phenomenon is also related to the strong

pattern of the CpG islands. For this, a comparison of multi-layer perceptrons with simpler dis-

criminatory functions such as linear or quadratic discriminant analysis will be useful.

The results in this work suggest that DNA structure can be exploited to successfully classify

promoters. A more detailed evaluation of the correlation among the sequence and structure like-

lihoods can now help, first to elucidate what can actually be gained by the combination of both,

and second to determine an optimal subset of features that indeed carries information going be-

yond the sequence. The difference in promoter classification between human and Drosophila is

very notable on the level of physical properties, especially when using the principal components,

and also inspires further study. Furthermore, a completely different approach to extract structural

features can be pursued: Profiles can be discretized and mapped to a small number, such as four

to sixteen, values. By doing so, they can be treated in exactly the same way as the DNA sequence

itself, and possibly represented by the same discrete stochastic models as presented in this thesis.

Modeling aspects. Future work can also deal with the current promoter model. Submodels

other than Markov chains may be more appropriate for the core promoter parts, ones that use

position specific probability distributions such as hidden Markov models. As long as the required

algorithms for these submodels are given, the existing segment model framework provides the

integration. Different promoter sub-classes can also be represented by an SSM using several
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parallel paths through the model.

Instead of the two-stage modeling with probabilistic sequence/structure models and the neu-

ral network classifier, the framework of Bayesian networks (Jensen, 1996) allows one to integrate

both in one model: Thinking of the neural network in figure 8.23 as a Bayesian network, one

could plug in sub-networks representing the Markov chain models and Gaussian distributions.

Two possible obstacles here are the treatment of the duration distributions, and the high com-

plexity of the Bayesian network training and propagation algorithms, especially for the highly

connected part representing the neural network.

Algorithmic aspects. As successful as the Markov chain models turned out to be for the pro-

moter recognition problem, there are some points that can lead to further improvement. One is

the learning of the variable length Markov chain models. The optimization according to the max-

imum mutual information criterion was carried out with constant background models and could

be replaced by a combinatorial optimization. Also, a combination of VLMCs and interpolated

Markov chains might represent the true underlying distribution more accurately. A different ob-

jective function is based on the minimum description length principle and was recently used by

Seldin et al. (2001) for VLMC structure learning in a context very similar to segment models.

As described in section 8.2.1, applying the MMI principle for segment models can also be revis-

ited to derive detailed estimation equations for the case of the entire segment model instead of

deferring it to the sub-models.

Exploiting orthologous sequences. Now that the DNA of a large number of organisms has

been sequenced, algorithms can exploit the sequence information of more than one organism

at once. One way to do so is to use the similarity of promoters of orthologous genes, i. e. of

genes that are derived from the same ancestral gene. For these genes, it can be assumed that their

regulatory sequence has not diverged too much. One caveat is that the sequence outside of the

transcription factor binding sites may mutate without affecting the functionality, and promoters

can therefore be expected to be more degenerate than coding regions. It is thus not clear whether

additional features about sequence similarity can help to find the proximal promoter and the

transcription start site, or if similarity can only help to narrow down the search region for pattern

identification (see section 9.2 below). This will depend strongly on the two organisms for which

the similarity is computed.

An integration of similarity information into the existing system can happen on the level of

the promoter sub-models, thus taking possibly different degrees of conservation of e. g. TATA

box state (high) and spacer state (low) into account.
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Computational promoter recognition has always been notorious for its difficulty. Neverthe-

less, this work has shown how far we can push the recognition rate when using state-of-the-art

probabilistic modeling. Now that the genomes of both man and fruit fly are available, large-scale

sequencing projects of cDNAs including the 5’ mRNA cap structure will lead to larger high-

quality data sets for both training and evaluation of current models (Suzuki et al., 2001). In this

way, experimental and computational approaches will help each other to obtain genome-wide

sets of proximal promoters, and to finally understand the complex phenomenon of eukaryotic

gene regulation.

Recent developments. After the thesis was submitted in November 2001, the models described

above were retrained using new data obtained from exactly these large-scale cap-selected full-

length cDNA sequencing efforts at the Berkeley Drosophila Genome Project. A much larger

training set of 1,864 promoters, 2,635 coding sequences and 1,755 intron sequences in the same

form as described in chapter 4 could thus be extracted. The new results are largely in accordance

with what is described above and shall therefore be only sketched; the details will be published

elsewhere (Ohler et al., 2002).

Whereas the old data set was too small to perform a cross-validation evaluation using a neural

network classifier, it is now possible to perform a five-fold cross-validation classification of this

data, using the system with sequence features only (cf. figure 8.17), profile derived features only

(figure 8.22), and the combination of both feature types (figure 8.24). Three parts of the data were

used for density estimation, one part for neural network training, and the fifth part for testing.

Again, principal component analysis did not lead to the best combined performance, which was

achieved by the mean value feature set of stacking energy, as observed earlier for the human

set. Most of the improvement is already gained on the classification performance using sequence

features alone, which is not only due to the larger data set, but also to the much better quality

compared to the old set (see Ohler et al. (2002)).

The models were finally applied another time on the genomic Drosophila test set, after being

re-trained on the full data set excluding 22 of the 1,864 promoters that matched entries of the

Adh test set. Table 9.3 shows the new results on a genomic scale; depending on the threshold

used, a reduction of false positives by about three to four times is achieved (cf. table 9.1).

9.2 Analysis of promoter sequences

This chapter closes with a look at the analysis of promoter sequences, assuming that we know

about their location. The interest in this field (Ohler and Niemann, 2001) received a great boost
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sn FP rate sp

19.5 1/106,647 69.2

36.9 1/25,853 50.7

52.1 1/12,016 40.3

Table 9.3: MCPROMOTER results on fruit fly data after re-training with a larger data set of

promoter and non-promoter sequences. Shown are the true and false positive rate as well as

the corresponding specificity value on the Drosophila Adh promoter set for different thresholds

delivering comparable numbers of true positives as in table 9.1.

with the arrival of microarray gene expression data: Once a group of genes with a similar expres-

sion profile is determined (e.g., that are activated at the same time in the cell cycle (Spellman

et al., 1998)), a natural assumption is that the similar profile is (partly) caused by and reflected

in a similar structure of the regulatory regions involved in transcription. The ultimate goal is the

automated construction of specific promoter models containing a combination of several regula-

tory elements (cf. section 3.3.3). Research so far has focused on the detection of single motifs

(representing transcription factor binding sites) common to the promoter sequences of putatively

co-regulated genes. Although this problem might seem simple at first, it is very complex and

requires that one finds

• a pattern of unknown size that might not be well conserved between promoters

• in a set of sequences that do not necessarily represent the complete promoters, and

• that was in many cases grouped together by a clustering algorithm that itself can be error-

prone and include genes that are not co-expressed in vivo.

Therefore, studies have mainly concentrated on the rather “simple” genome of the yeast S.

cerevisiae — it was the first fully sequenced eukaryotic organism, and the first one for which

a comprehensive amount of expression data became publicly available. Statistics on mapped

transcription start sites (Zhu and Zhang, 1999) show that its 5’ UTR sequences are rather short

(a mean of 89 bp), and most of the known regulatory elements are close to the translated part

of the genes, the majority being found between 10 and 700 bp upstream from the translation

start codon. This means that for yeast, the region upstream of the start codon can be used as a

good approximation of a promoter region, in contrast to the higher eukaryotes that are in the

focus of this work. Most algorithms searching for conserved patterns in yeast promoters thus

take 500–1000 bp upstream of the start codons of supposedly co-regulated genes as data set.

There are two fundamentally different approaches to tackle the problem:
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• Alignment methods aim at the identification of unknown signals by a significant local mul-

tiple alignment of all sequences. As a direct multiple alignment would be computationally

very expensive, the methods go a different way. For example, the CONSENSUS algorithm

approximates a multiple alignment by aligning sequences one by one (Hertz and Stormo,

1999) and optimizing the information content of the weight matrix constructed from the

alignment. Other algorithms use a probabilistic approach; they consider the start positions

of the motifs in the sequences to be unknown and perform a local optimization over the

sequence to determine which positions deliver the most conserved motif. Two important

methods are Gibbs sampling (Lawrence et al., 1993) and Expectation Maximization in the

case of the MEME system (Bailey and Elkan, 1995).

• Enumerative or exhaustive methods examine all oligomers of a certain length and report

those that occur more often than expected from the overall promoter sequence composi-

tion(van Helden et al., 1998; Brazma et al., 1998). This approach has gained in popularity

since the arrival of complete genomes, and it is far from trivial — for example, a normal-

ization regarding self-overlapping or palindromic patterns has to be carried out. Köstler

(2001) provides an extensive treatment with an application for motif identification in viral

regulatory regions.

An orthologous approach is to identify elements not by analyzing different promoters from

the same organism, but promoters of the same gene from different related species (Blanchette

et al., 2000). An optimal alignment of a small region of specified size is constructed that takes

the phylogenetic distance into account.

From a practical point of view, the most eye-catching difference between exhaustive and

alignment methods is maybe the shape of the result: The alignment approaches deliver a model

of the motifs (usually a weight matrix) built from the alignment, the enumerative methods a list

of over-represented oligomers, possibly already grouped to form consensus sequences. Figure

9.1 shows an exemplified flowchart to illustrate this.

Background models. One important aspect of pattern discovery approaches concerns the

background model. Without a reliable background model, the results are biased towards gen-

erally over-represented patterns. Therefore, patterns such as mainly GC-rich motifs in organisms

whose promoters have a high GC content, or the TATA box, will be found, and patterns that are

specific to a subset of interest will be lost. A good background model is constructed from the

set of all promoters and takes their specific sequence composition into account. This means that

a specific model, at least for each organism, has to be trained, and the necessary information is

not always available. Detailed studies have examined that approaches become more prone to fail



9.2. Analysis of promoter sequences 151

...CGTCGGGC

...TTCA

...TTTCCAG

...CACTCACACGTGG
CACGTGC

CACGTGG
...TGGCACGTGC

CACGTGG

GACTAGCAC...
TCACTTG...

GTTTAAAAAGGCA...
AATGAAC...

GGCGGAAATT...

 1.340 −2.582 −0.158 −2.583 

genes with
similar
expression

cgcacg....
.gcacgt...
..cacgtg..
...acgtgc.
....cgtgcg
cgcacgtgcg

aaacgt...
.aacgtg..
..acgtgc.
...cgtgcg
aaacgtgcg

cccacg....
.ccacgt...
..cacgtg.. 
...acgtgc.
....cgtgcg
cccacgtgcg

cluster 1

cluster 2

cluster 3

regions

extraction of
regulatory

weight matrix
(log−odds)

alignment
method

oligomers
over−represented

clusters of

method
enumerative

12
11
10

9
8
7
6
5
4

2
1

3

−0.410  1.276 −2.571 −0.335 
 0.438 −2.576  0.696 −0.348 
−0.390 −2.582  1.620 −2.584
−2.578  0.735  1.235 −2.583 
−2.583 −2.526  1.926 −2.584 
−2.583 −2.583 −2.584  1.715 
−2.581 −2.583  1.927 −2.546 
−2.580  1.970 −2.582 −2.583 
 1.643 −2.585 −2.577 −2.583 
−2.571  1.967 −2.584 −2.523

−2.583 −2.574  0.702  1.023 

GA C T

Figure 9.1: An exemplified flowchart to illustrate the two different approaches for motif

identification. I analyzed 800 bp upstream from the translation start sites of the 5 genes from the

yeast gene family PHO by the publicly available systems MEME (alignment, http://meme.sdsc.

edu) and RSA (exhaustive search, http://www.ucmb.ulb.ac.be/bioinformatics/rsa-tools). MEME

was run on both strands, one occurrence per sequence mode, and found the known motif ranked

as second best. RSA tools was run with oligo size 6 and non-coding regions as background.

if the motif is not very well conserved among the sequences and the sequences to be examined

become too large, and also showed that good background models can help to avoid this problem

to some extent (Pevzner and Sze, 2000; Thijs et al., 2001).

New directions. Recent research concentrated on the detection of co-occurring motifs sepa-

rated by a fixed (van Helden et al., 2000) or variable spacer length (Sinha and Tompa, 2000), or a
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variable motif length in general (Bussemaker et al., 2000). To allow for mismatches, ambiguous

nucleotide letters (see appendix A) are included in the oligomer alphabet.

Thus it seems as if the enumerative approach is the method of choice: It exhaustively searches

over all possible oligomers and provides a global solution. In practice, though, alignment meth-

ods are more flexible: They can find long motifs the detection of which is simply not feasible

by an exhaustive approach. Also, they deliver a probabilistic model for a motif, such as a linear

HMM, which can be used more flexible than a string pattern for searching purposes. An ideal

approach would therefore contain two steps: First apply an enumerative approach, and use the

results to initialize or guide the model for an alignment method.

A new way to look at the data is to cluster genes based on both expression levels and common

motifs at the same time (Holmes and Bruno, 2000; Bussemaker et al., 2001). This can help to

separate gene groups that are active under the same conditions but belong to separate regulatory

pathways.

The question remains how we can use all these methods when we move on to the analysis

of higher eukaryotes with their highly complex genomes. The euchromatin of D. melanogaster

has a gene density of roughly one gene every 9 kilobases and an average predicted transcript

size of 3,058 bp (Adams et al., 2000), leaving a huge portion of the genome as potential loca-

tions of regulatory elements. In some cases, the alignment of non-coding sequences from two

related species, known as phylogenetic footprinting, can help to narrow the search region and

reveal conserved and potentially regulatory regions (Duret and Bucher, 1997, cf. section 3.3.2).

A publication by Wasserman et al. (2000) closes the gap between this approach and motif identi-

fication: 28 orthologous co-regulated gene pairs from human and rat were automatically aligned

to identify conserved un-gapped sequence blocks, and the subsequent analysis of the conserved

parts with a Gibbs sampling approach revealed the known motifs that were missed otherwise.

But in general, we will also need reliable ab initio promoter prediction, such as described in this

work, to find the true regions in which the regulatory patterns are hidden.
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Summary

The massive data generation efforts that have taken place in molecular biology, such as the de-

termination of the complete DNA sequence of a multitude of organisms, has lead to the new

field of bioinformatics. It deals with the organization, classification, and interpretation of these

data, and finally helps to give insight into the underlying phenomena. One topic of interest is the

computer-assisted annotation of primary DNA sequence, which includes the localization of all

genes and their regulatory regions. This thesis describes the automatic identification of eukary-

otic promoters, regulatory DNA regions in higher organisms that largely control the expression

of genes. Two different probabilistic promoter models for the fruit fly Drosophila melanogaster

and man are trained and applied on a genome wide scale. These models take features of the DNA

sequence as well as the DNA structure into account.

Hereditary information is stored within DNA, a double stranded molecule which consists of a

string of basic units, the nucleotides. In eukaryotic organisms, the DNA is divided into a number

of chromosomes to enable the necessary tight packing. The information stored on the DNA is

organized in discrete stretches called genes. The largest class of protein-encoding genes is ex-

pressed in a two-step process: First, a polymerase enzyme transcribes the gene and synthesizes

a complementary messenger RNA copy of it, then this copy is translated into a protein with a

specific functional or structural role. Genes of other classes are not translated and lead to func-

tional molecules different from proteins. Computer-assisted genome annotation can be divided

into two stages. At first, structural annotation deals with the identification of sequence patterns

such as genes and promoters, either by machine learning methods or by similarity to other se-

quences. Then, functional annotation derives information about proteins by matches to similar

sequences with known function, or by prediction of certain properties of subunits and sites. Gene

function can also be related to the organization of its regulatory region.

Gene regulation is observed on a number of levels, and perhaps the most important one is the

153
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transcription by the polymerase. To a large extent, it is controlled by the promoter, a region close

to the transcription start site. Of particular importance is the core promoter region, in which gen-

eral transcription factors, i. e. proteins which guide the polymerase to the correct start site, bind

to specific DNA sequence patterns. Subunits of only one general transcription factor undoubtedly

interact with the DNA in a direct way. In the neighborhood of the core promoter, less frequent

patterns interact with specific transcription factors. The combination of several of these patterns

leads to the highly specific regulation of gene expression required for complex organisms, which

must control the precise time and place of the activation of every gene in a genome. Apart from

the DNA sequence, DNA structure in promoter regions plays a key role in regulation: A nec-

essary pre-requisite to transcription is the accessibility of DNA to transcription factors and the

polymerase. Therefore, potentially active regulatory regions can be found in an open structure

of a chromosome and in less flexible parts of the DNA double helix. Enhancer regions up to

several thousand nucleotides away have also been found to affect the transcriptional activity of

a promoter. On a higher level, locus control regions and matrix attachment regions influence the

activity of several genes at once.

Computational promoter recognition for eukaryotes has so far been based on models of the

promoter sequence only. Signal approaches identify transcription factor binding sites, and make

a decision based on the co-occurrence of several patterns within a certain window. Neural net-

works or positional weight matrices are the most common models. Content approaches use oligo-

nucleotide statistics of long promoter and non-promoter sequences, for example in the form of

Markov chains. Hybrid approaches combine both ideas. The DNA structure in promoter regions

has been extensively studied, but only one approach to recognize promoters using structural fea-

tures has been described, and it focused on prokaryotes. For a few well-studied cases, models

for the recognition of a small promoter sub-class have been proposed, but not enough knowledge

has been gained to cover a large fraction of all promoters.

Representative human and Drosophila training sequences were obtained: The promoters

were taken from the Eukaryotic Promoter Database and one additional collection, and the non-

promoter sequences from data sets collected for the GENIE gene finder. For an independent

evaluation, 92 putative promoter regions were extracted from the Drosophila Adh region. In ad-

dition, the start points of 339 known genes of human chromosome 22 (release 2.3) were used.

Probabilistic models that are trained on these data sets include stationary Markov chains and

stochastic segment models. Markov chains calculate the probability of each symbol in a sequence

conditioned on a limited number of predecessors, the context. The size of the context denotes the

order of the model. If the probability distributions are independent of the sequence position, the

Markov chain is called stationary. The parameters then consist of the set of nucleotide probability

distributions conditioned on all possible contexts. A common objective function to estimate the
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parameters is maximum likelihood (ML). Discriminative objective functions such as maximum

mutual information (MMI) take both negative and positive samples into account and can lead to

better classification results than ML. For MMI estimation, a modified gradient descent technique

suited for rational objective functions is devised. The complexity can be tackled with a corrective

training scheme, where only mis-classified samples are considered in each iteration.

The number of Markov chain parameters grows exponentially with the order, and models of

higher order easily over-adapt to the training data. Two approaches are described to take long-

range dependencies into account despite this: Interpolated Markov chains use weighted Markov

chains of different orders, and can be additionally adjusted to the frequency of each context.

In contrast, variable length Markov chains contain conditional distributions of differing order,

represented as a context tree. A node is part of this tree if it provides additional information when

compared to its parent and can be estimated reliably. Two algorithms for building context trees

are described, and a cross-validation scheme for the construction of optimal trees is proposed.

Stochastic segment models (SSMs) provide a more complex framework for sequence model-

ing. They consist of a number of states and transitions between them. Each time a state is visited,

a subsequence of a certain length is emitted, according to a distribution on the length of the

emitted sequence and a distribution to generate a particular sequence of that length. SSMs are

therefore generalized hidden Markov models (HMMs): In contrast to HMMs which emit only

one symbol per state visit, the SSM uses an explicit length modeling, and the output distribu-

tions are allowed to take arbitrary dependencies among the symbols into account. Algorithms to

compute sequence likelihoods and to train the parameters of the model are derived from simpler

versions for HMMs, and special care is taken to ensure a practical runtime complexity.

With a different approach, promoters can be classified using features related to DNA struc-

tural properties. The first group of features is related to CpG islands, regions with a high GC

content and high CG di-nucleotide frequency. These regions are correlated with an open chromo-

somal structure, therefore hinting at accessible DNA regions. The other feature group is extracted

from DNA property profiles. A profile is a transformed representation of a sequence, where over-

lapping di- or tri-nucleotides are replaced by experimentally defined values related to properties

such as DNA bendability. The average value and the slope of the regression line of several profile

sub-regions are used as features and modeled with Gaussian (mixture) distributions. To combine

the features of several properties, they are evaluated by principal component analysis.

Representatives of two different groups of decision functions are used to distinguish between

promoters and non-promoters. As an example of statistical classifiers, a modified Bayesian clas-

sifier is described. Bayes’ classification is based on the highest a posteriori probability, which

minimizes the risk of mis-classification under certain assumptions. Neural networks are an ex-

ample of distribution-free classifiers. Only the most popular type of multi-layer perceptrons is
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considered, in which a number of computing nodes is arranged in several layers. Each node is

only connected to the layers immediately preceding and following it, and the training algorithm

of error back-propagation explicitly exploits this restricted topology.

All these techniques are finally put together in the MCPROMOTER system for promoter recog-

nition in eukaryotic genomic DNA. A 300 bp moving window is analyzed by probabilistic mod-

els of promoter and non-promoter-sequences, and then used to classify the sequence window. To

suppress the effect of multiple adjacent hits, the classifier output is smoothed, and only the best

local maxima within a certain range and above a certain threshold are retained.

To choose among the presented models and classifiers, detailed cross-validation classification

experiments are performed on sequence sets of positive and negative samples. At first, different

Markov chain models with Bayes’ classification rule are compared. MMI parameter estimation

turns out to be equal or slightly better than ML estimation. Variable-length Markov chains are

less prone to over-adaptation with increasing model order, but a greater improvement is gained

by interpolated Markov chains, where no over-adaptation is observed for practical model orders.

Equal recognition rates of 82.6 % (human) and 83.0 % (Drosophila) are obtained. Promoter se-

quences are screened for positionally conserved patterns, and different linear stochastic segment

models are trained accordingly. The strength of the patterns represented in the states is examined.

The classification results are an improvement when compared to Markov chain promoter models:

86.9 % for human, and 85.6 % for Drosophila. To account for non-linear dependencies among

the promoter states, a multi-layer perceptron replaces the Bayes classifier. It takes the normal-

ized likelihoods of promoter states and background models as input. To avoid over-adaptation,

the sequence models and the network are trained on independent parts of the data.

A multi-layer perceptron is also used to classify promoters using features derived from struc-

tural profiles. With features derived from single profiles, better classification results are obtained

for Drosophila than for human. The combination of all profiles with principal component anal-

ysis leads to better results for Drosophila: Using the first component of 14 features leads to an

equal recognition rate of 74%. For human, the overall best rate is 64.3%.

To localize promoters in genomic DNA, the sequence and profile features are finally joined in

a larger neural network and compared to the other models under consideration. For Drosophila,

the results indeed improve when the model takes more dependencies or features into account, and

the sequence/profile joint models perform best. The output threshold causing the largest distance

from random predictions leads to a sensitivity of 52.1% and a false prediction every 3,791 bases.

This is significantly better than other published approaches. Due to the strong correlation of

many human promoters to CpG islands, interpolated Markov chain models are as good as the

sequence/profile joint model, and at a sensitivity of 64.3%, a false prediction is made every

32,411 bases. This is competitive with all other systems evaluated on the same data set so far.
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Ambiguous Nucleotide Letters

To deal with incomplete specification of bases in nucleic acid sequences, the Nomenclature Com-

mittee of the International Union of Biochemistry (NC-IUB) issued a nomenclature where single

letter symbols are assigned to groups of nucleotides. This is useful in cases where two or more

bases are permitted at a particular position, or where uncertainty exists as to extent and/or iden-

tity. These ambiguous codes are often used to describe consensus sequences, i. e. the common

denominator of several instances of a binding site. They are given in table A.1.

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R G or A puRine

Y T or C pYrimidine

M A or C aMino

K G or T Keto

S G or C Strong interaction (3 H bonds)

W A or T Weak interaction (2 H bonds)

H A or C or T not-G, H follows G in the alphabet

B G or T or C not-A, B follows A

V G or C or A not-T (not-U), V follows U

D G or A or T not-C, D follows C

N G or A or T or C aNy

Table A.1: Ambiguous nucleotide letter code
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Appendix B

Conversion of a context tree into an

automaton

It was mentioned in section 5.2.3 that it is advantageous to convert a context tree representing a

variable length Markov chain into a probabilistic finite automaton (PFA) that generates symbols

according to the same probability distribution. The reason for that is that one has to descend up

to N steps to reach a leaf in the context tree of N th order. A PFA, on the other side, only has to

look up the transition probability in a matrix, which means a speed gain of up to factor N . In the

following we will use the same notation as in chapter 5 and figures 5.2 and 5.3. For v̂ = v̂1 . . . v̂l,

prefix(v̂) = v̂1 . . . v̂l−1.

A PFA consists of a set of states Q = {q0, . . . , qn−1}. For each symbol v ∈ V , there exists a

transition to another state, as defined by the transition function σ : Q× V −→ Q. A symbol is

generated (and therefore, a transition is followed) with a certain probability, given by the prob-

ability distribution over the next symbol γ : Q× V −→ [0, 1]. A start vector π : Q −→ [0, 1]

completes the definition of a PFA, which is given by the 5-tuple {Q, V, σ, γ, π}. The probability

to generate a sequence of symbols w = w1 . . . wT is therefore calculated like this:

P (w) =
∑

q0∈Q

πq0
·

T−1∏

i=0

γ(qi, wi+1), (B.1)

with qi+1 = σ(qi, wi+1).

The conversion of a context tree into a PFA is straightforward:

1. Extend the tree to guarantee a well defined transition function.

2. Build up the transition function σ.

3. Identify each node of the extended tree with a state of the PFA; set the corresponding entries

in γ to the probability distribution of the node.

159



160 Appendix B. Conversion of a context tree into an automaton
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Figure B.1: A context tree, from Kulicke (2000). The tree was extended by the leaves 01 and 11,

depicted with dotted lines.

4. Set π to (1, 0, . . . , 0), i. e. let the state representing the root node be the only possible start

state.

Naturally, one would start the conversion by taking the leaves of the tree as states of the

automaton. But the next node in the tree might depend on symbols that are further back in history

and therefore not contained in the current node label. Figure B.1 shows such a context tree, where

the transition function would not be well defined without the dotted extra leaves: From the leaf

with label 0, transitions to both 001 and 101 are possible when observing a 1, depending on

whether a 0 or a 1 was observed before the label 0. In general, this happens when there is a leaf

with label v̂ and a symbol v so that no leaf can be found whose label v̂
�

is a suffix of v̂v. That

means that for every leaf in the tree, the longest prefix must be either a leaf or an internal node.

If this is not the case, the leaf must be extended, and the new children inherit the probability

distribution from the parent node. For sparse trees, this might have the consequence of a much

larger automaton.

The function σ is then build by searching for every node v̂ of the tree and every symbol v

which is the node with the label v̂
�

= suffix(v̂v). The resulting PFA for the example tree in

figure B.1 is depicted in figure B.2. One can see that once the states corresponding to the inner

nodes of the tree have been left, the automaton remains in states of former leaf nodes. This part

corresponds to a probabilistic suffix automaton which has the property that the set of its state

labels SL is suffix free:

∀sl ∈ SL : suffix∗(sl)∩SL = {sl} (B.2)

with suffix∗(x) = {xi . . . xl|1 ≤ i ≤ l}∪{e}. The part outside the suffix automaton can be re-



161

0 1

11

101001

1001

00

(0.3, 0.7)

e (0.2, 0.8)

(0.4, 0.6)

(0.6, 0.4) (0.3, 0.7) (0.7, 0.3)

(0.3, 0.7) (0.8, 0.2) (0.9, 0.1)

Figure B.2: Result of the conversion of the extended context tree in picture B.1 to a PFA (from

Kulicke (2000)). The circled part corresponds to a probabilistic suffix automaton, the part outside

to the inner nodes of the original context tree.

placed by a more elaborate start distribution π if an additional property holds; interested readers

are referred to (Ron et al., 1996).
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Appendix C

Parameters of physico-chemical properties

This appendix contains the complete list of parameter sets used to compute physico-chemical

profiles (see chapter 6).

First Second base

base A C G T

A 0.97 0.13 0.33 0.58

C 1.04 0.19 0.52 0.33

G 0.98 0.73 0.19 0.13

T 0.73 0.98 1.04 0.97

Table C.1: Parameters for A-philicity
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First Second base

base A C G T

A 35.5 33.1 30.6 43.2

C 37.7 35.3 31.3 30.6

G 39.6 38.4 35.3 33.1

T 31.6 39.6 37.7 35.5

Table C.2: Parameters for B-DNA twist

First Second Third base

base base A C G T

A A -0.274 -0.205 -0.081 -0.280

C -0.006 -0.032 -0.033 -0.183

G 0.027 0.017 -0.057 -0.183

T 0.182 -0.110 0.134 -0.280

C A 0.015 0.040 0.175 0.134

C -0.246 -0.012 -0.136 -0.057

G -0.003 -0.077 -0.136 -0.033

T 0.090 0.031 0.175 -0.081

G A -0.037 -0.013 0.031 -0.110

C 0.076 0.107 -0.077 0.017

G 0.013 0.107 -0.012 -0.032

T 0.025 -0.013 0.040 -0.205

T A 0.068 0.025 0.090 0.182

C 0.194 0.013 -0.003 0.027

G 0.194 0.076 -0.246 -0.006

T 0.068 -0.037 0.015 -0.274

Table C.3: Parameters for DNA bendability
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First Second base

base A C G T

A 35 60 60 20

C 60 130 85 60

G 60 85 130 60

T 20 60 60 35

Table C.4: Parameters for DNA bending stiffness

First Second base

base A C G T

A 66.51 108.80 85.12 72.29

C 64.92 99.31 88.84 85.12

G 80.03 135.83 99.31 108.80

T 50.11 80.03 64.92 66.51

Table C.5: Parameters for DNA denaturation

First Second base

base A C G T

A 1.9 1.3 1.6 0.9

C 1.9 3.1 3.6 1.6

G 1.6 3.1 3.1 1.3

T 1.5 1.6 1.9 1.9

Table C.6: Parameters for duplex stability — disrupt energy

First Second base

base A C G T

A -1.2 -1.5 -1.5 -0.9

C -1.7 -2.3 -2.8 -1.5

G -1.5 -2.3 -2.3 -1.5

T -0.9 -1.5 -1.7 -1.2

Table C.7: Parameters for duplex stability — free energy
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First Second Third base

base base A C G T

A A 0 1 1 0

C 1 2 2 1

G 1 2 2 1

T 0 1 1 0

C A 1 2 2 1

C 2 3 3 2

G 2 3 3 2

T 1 2 2 1

G A 1 2 2 1

C 2 3 3 2

G 2 3 3 2

T 1 2 2 1

T A 0 1 1 0

C 1 2 2 1

G 1 2 2 1

T 0 1 1 0

Table C.8: Parameters for GC trinucleotide content
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First Second Third base

base base A C G T

A A -36 -6 6 -30

C 6 8 8 11

G -9 25 8 11

T -13 7 18 -30

C A -9 17 -2 18

C 8 13 2 8

G 31 25 2 8

T -18 8 -2 6

G A -12 8 8 7

C 13 45 25 25

G -5 45 13 8

T -6 8 17 -6

T A -20 -6 -18 -13

C 8 -5 31 -9

G 8 13 8 6

T -20 -12 -9 -36

Table C.9: Parameters for nucleosome positioning

First Second base

base A C G T

A -18.66 -13.10 -14.00 -15.01

C -9.45 -8.11 -10.03 -14.00

G -13.48 -11.08 -8.11 -13.10

T -11.85 -13.48 -9.45 -18.66

Table C.10: Parameters for propeller twist
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First Second base

base A C G T

A 35.1 31.5 31.9 29.3

C 37.3 32.9 36.1 31.9

G 36.3 33.6 32.9 31.5

T 37.8 36.3 37.3 35.1

Table C.11: Parameters for protein-DNA-twist

First Second base

base A C G T

A 2.9 2.3 2.1 1.6

C 9.8 6.1 12.1 2.1

G 4.5 4.0 6.1 2.3

T 6.3 4.5 9.8 2.9

Table C.12: Parameters for protein-induced deformability

First Second base

base A C G T

A -5.37 -10.51 -6.78 -6.57

C -6.57 -8.26 -9.69 -6.78

G -9.81 -14.59 -8.26 -10.51

T -3.82 -9.81 -6.57 -5.37

Table C.13: Parameters for stacking energy

First Second base

base A C G T

A 3.9 4.6 3.4 5.9

C 1.3 2.4 0.7 3.4

G 3.4 4.0 2.4 4.6

T 2.5 3.4 1.3 3.9

Table C.14: Parameters for Z-DNA stabilizing energy
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Design and Implementation Details

In this appendix, some remarks about the design and implementation of the MCPROMOTER

system are discussed, and references to programs developed by other researchers are given.

D.1 Densities for Sequences

In figure D.1, the main C++ classes for DNA sequence modeling and their relations are depicted

(see Stroustrup (1997) for details on the C++ programming language). All classes are derived

from the abstract class Density and are integrated into the C++ programming environment PUMA

(Paulus and Hornegger, 2001). The abstract class specifies that all the derived classes have to

provide certain functions, such as the calculation of probabilities.

One branch of the hierarchy models Markov chain densities (section 5.2), either as inter-

polated Markov chains with encapsulated C code by Schukat-Talamazzini et al. (1997), or as

variable length Markov chains, described in more detail by Kulicke (2000).

A segment model (section 5.3) is also derived from the Density class and has to contain

instances of SegmentDensity, which are the states of a segment model. General algorithms such

as Viterbi training and the forward algorithm are implemented on this level, as we know that

all possible densities are derived from the same base class Density and therefore provide the

necessary functions. More specific versions of the segment model algorithms can be implemented

in derived classes, as is the case for the SegmentMarkov class in which the states are restricted to

be segment densities that are based on a Markov chain model. SegmentDensity also contains an

instance of a duration distribution, in our case of a discrete histogram DurHisto, which is again

derived from the Density base class.

Continuous Gaussian densities which are used to model DNA property profile features (see

chapter 6) are also derived from the Density base class; this is described in more detail in
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DurHisto

DurUniform

MarkovChain

SegmentDensity

SegDensMarkov

Density

VariableMCInterpolMC

SegmentMarkov

SegmentModel

Figure D.1: The class hierarchy for sequence modeling.

BioseqIter BioSeq

DnaSeq

SeqFeature

PairFeature TripleFeat

BioData

DnaData

FastaData

SeqScore

Figure D.2: The class hierarchy for DNA sequence handling.

(Hornegger, 1996).

D.2 DNA sequence handling classes

A number of C++ classes were designed to enable the processing and manipulation of DNA

sequences (figure D.2). The class DnaSeq is derived from a more general class BioSeq and con-

tains methods to substitute ambiguous symbols, give the reverse complement of a sequence, give

a sub-sequence and so forth. A class BioseqIter serves as an iterator class which moves a spec-

ified window along a DNA sequence object. For input and output, BioData and derived classes

are provided, which contain methods to read in or store files with sets of DNA sequences in a

certain format and convert them to DnaSeq objects.

Continuous values referring to positions in sequences are handled with SeqScore. In the case

of the MCPROMOTER system, this is both the output of the system as well as the property profiles

computed along sequences (see section 6.2). This class contains various filters as well as methods
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to compute the features derived from property profiles.

The property profiles themselves are calculated by SeqFeature objects, which are instantiated

with a di- or tri-nucleotide parameter set (PairFeature respectively TripleFeature, see appendix

C).

D.3 Further references

The neural networks used in the McPromoter system were trained with the Stuttgart Neural Net-

work Simulator SNNS version 4.2 (Zell et al., 1999) and converted to C-code. The principal

component analysis was implemented in C by Georg Stemmer at the Chair for Pattern Recog-

nition, University of Erlangen. The output of the system is given in the general feature format

(http://www.sanger.ac.uk/Software/formats/GFF/).
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Appendix E

DVD with Data Sets

A DVD with all data sets described in chapter 4 are available upon request. These include the

representative sequence sets for model training as well as the contiguous DNA sequences used

to evaluate the system, along with the lists of transcription start sites in them.
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A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler. Hidden Markov models in computational

biology. J Mol Biol., 235:1501–1531, 1994a.

A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer. Predicting transmembrane protein topology

with a hidden Markov model: application to complete genomes. J Mol Biol., 305:567–580, 2001.

A. Krogh, I. S. Mian, and D. Haussler. A hidden Markov model that finds genes in E. coli DNA. Nucleic

Acids Res., 22:4768–4778, 1994b.

A. Kulicke. Variable Length Markov Chains. Student’s thesis, University of Erlangen-Nuremberg, 2000.

D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden Markov model for the

recognition of human genes in DNA. In Proc Int Conf Intell Syst Mol Biol., volume 4, pages 134–142,

1996.

A. K. Kutach and J. T. Kadonaga. The downstream promoter element DPE appears to be as widely used

as the TATA box in Drosophila core promoters. Mol Cell Biol., 20:4754–4764, 2000.

T. Lagrange, A. N. Kapanidis, H. Tang, D. Reinberg, and R. H. Ebright. New core promoter element

in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor

IIB. Genes Dev., 12:34–44, 1998.

D. S. Latchman. Gene Regulation — A Eukaryotic Perspective. Stanley Thornes Ltd, 3rd edition, 1998.



BIBLIOGRAPHY 181

C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton. Detecting

subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 262(5131):208–

214, 1993.

B. Lewin. Genes VII. Oxford Univ Press, 1999.

S. E. Lewis, M. Ashburner, and M. G. Reese. Annotating eukaryote genomes. Curr Opin Struct Biol, 10:

349–354, 2000.

G.-C. Liao, E. J. Rehm, and G. M. Rubin. Insertion site preferences of the P transposable element in

Drosophila melanogaster. Proc. Natl Acad. Sci. U.S.A., 97:3347–3351, 2000.

S. Lisser and H. Margalit. Determination of common structural features in Escherichia coli promoters by

computer analysis. Eur. J. Biochem., 223:823–830, 1994.

F. Lyko. DNA methylation learns to fly. Trends Genet., 17:169–172, 2001.

S. Matis, Y. Xu, M. B. Shah, D. Buley, X. Guan, J. R. Einstein, R. J. Mural, and E. C. Uberbacher.

Detection of RNA polymerase II promoters and polyadenylation sites in human DNA sequence. Comput

Chem., 20:135–140, 1996.

B. Merialdo. Phonetic recognition using hidden Markov models and Maximum Mutual Information train-

ing. In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, pages 111–114, 1988.

T. M. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

A. Nadas, D. Nahamoo, and M. A. Picheny. On a model-robust training method for speech recognition.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 36:1432–1435, 1988.

H. Niemann. Klassifikation von Mustern. Springer, Berlin, 1983.

H. Niemann. Pattern Analysis and Understanding. Springer, Berlin, 1990.

D. B. Nikolov and S. K. Burley. RNA polymerase II transcription initiation: A structural view. Proc. Natl

Acad. Sci. U.S.A., 94:15–22, 1997.

Y. Normandin and S. D. Morgera. An improved MMIE training algorithm for speaker-independent, small

vocabulary, continuous speech recognition. In Proc. Int. Conf. on Acoustics, Speech, and Signal Pro-

cessing, pages 537–540, 1991.

U. Ohler. Polygramme und Hidden Markov Modelle zur DNA–Sequenzanalyse. Student’s thesis, Univer-

sity of Erlangen-Nuremberg, 1995.



182 BIBLIOGRAPHY

U. Ohler. Promoter prediction on a genomic scale — the Adh experience. Genome Res., 10:539–542,

2000.

U. Ohler, S. Harbeck, and H. Niemann. Discriminative estimation of language model classifiers. In
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